Reinholdt Anders, Kwon Seongyeon, Jafari Mehrafshan G, Gau Michael R, Caroll Patrick J, Lawrence Chad, Gu Jun, Baik Mu-Hyun, Mindiola Daniel J
Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States.
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
J Am Chem Soc. 2022 Jan 12;144(1):527-537. doi: 10.1021/jacs.1c11215. Epub 2021 Dec 28.
AdN (Ad = 1-adamantyl) reacts with the tetrahedral Ti complex [(Tp)TiCl] (Tp = hydrotris(3--butyl-5-methylpyrazol-1-yl)borate) to generate a mixture of an imide complex, [(Tp)TiCl(NAd)] (), and an unusual and kinetically stable azide adduct of the group 4 metal, namely, [(Tp)TiCl(γ-NAd)] (). In these conversions, the product distribution is determined by the relative concentration of reactants. In contrast, the azide adduct forms selectively when a masked Ti complex (N or AdNC adduct) reacts with AdN. Upon heating, extrudes dinitrogen in a unimolecular process proceeding through a titanatriazete intermediate to form the imide complex , but the observed thermal stability of the azide adduct ( = 61 days at 25 °C) is at odds with the large fraction of imide complex formed directly in reactions between AdN and [(Tp)TiCl] at room temperature (∼50% imide with a 1:1 stoichiometry). A combination of theoretical and experimental studies identified an additional deazotation pathway, proceeding through a bimetallic complex bridged by a single azide ligand. The electronic origin of this deazotation mechanism lies in the ability of azide adduct to serve as a π-backbonding metallaligand toward free [(Tp)TiCl]. These findings unveil a new class of azide-to-imide conversions for transition metals, highlighting that the mechanisms underlying this common synthetic methodology may be more complex than conventionally assumed, given the concentration dependence in the conversion of an azide into an imide complex. Lastly, we show how significantly different AdN reacts when treated with [(Tp)VCl].
金刚烷基氮(AdN,Ad = 1-金刚烷基)与四面体钛配合物[(Tp)TiCl](Tp = 氢三(3-叔丁基-5-甲基吡唑-1-基)硼酸盐)反应,生成酰亚胺配合物[(Tp)TiCl(NAd)]()和一种不寻常且动力学稳定的第4族金属叠氮加合物,即[(Tp)TiCl(γ-NAd)]()的混合物。在这些转化过程中,产物分布由反应物的相对浓度决定。相比之下,当一个掩蔽的钛配合物(N或AdNC加合物)与AdN反应时,会选择性地形成叠氮加合物。加热时,会通过一个钛氮杂环丁二烯中间体以单分子过程挤出氮气,形成酰亚胺配合物,但观察到的叠氮加合物的热稳定性(在25℃下为61天)与室温下AdN和[(Tp)TiCl]反应直接形成的大量酰亚胺配合物(化学计量比为1:1时约50%的酰亚胺)不一致。理论和实验研究相结合,确定了另一种脱氮途径,该途径通过一个由单个叠氮配体桥连的双金属配合物进行。这种脱氮机制的电子起源在于叠氮加合物能够作为π反馈键金属配体与游离的[(Tp)TiCl]作用。这些发现揭示了一类新的过渡金属叠氮到酰亚胺的转化,突出表明这种常见合成方法背后的机制可能比传统假设的更复杂,因为叠氮转化为酰亚胺配合物存在浓度依赖性。最后,我们展示了用[(Tp)VCl]处理时,不同的AdN反应有多么显著的差异。