Chen Chi-Kan
Department of Applied Mathematics, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 40227, Taiwan.
Heliyon. 2024 Feb 9;10(5):e26065. doi: 10.1016/j.heliyon.2024.e26065. eCollection 2024 Mar 15.
Gene networks (GNs) use graphs to represent the interaction relationships between genes. Large-scale GNs are often sparse and contain hub genes that interact with many other genes. In this paper, we propose a novel method called NetARD, which utilizes Automatic Relevance Determination (ARD) to estimate partial correlations, to infer GNs with the hub genes from gene expression data. We test NetARD on simulated GNs and in silico GNs, and it outperforms existing methods. In our high-throughput gene expression data analysis, we integrate the NetARD into a method called GN Co-expression Extension (GNCE). This approach infers the GNs of co-expressed genes, with genes from a predefined GN serving as hub genes. We validate this approach by extending the core GN of transcription factor genes of using microarray data. In an application example, we identify biological process (BP) Gene Ontology (GO) terms that are significantly involved in cancer progression. This task is accomplished by analyzing the GN inferred through GNCE using the core GN associated with the colorectal cancer pathway and RNA-seq data.
基因网络(GNs)使用图来表示基因之间的相互作用关系。大规模基因网络通常是稀疏的,并且包含与许多其他基因相互作用的枢纽基因。在本文中,我们提出了一种名为NetARD的新方法,该方法利用自动相关性确定(ARD)来估计偏相关性,以便从基因表达数据中推断出带有枢纽基因的基因网络。我们在模拟基因网络和计算机模拟基因网络上对NetARD进行测试,其性能优于现有方法。在我们的高通量基因表达数据分析中,我们将NetARD整合到一种名为基因网络共表达扩展(GNCE)的方法中。这种方法通过将来自预定义基因网络的基因作为枢纽基因,来推断共表达基因的基因网络。我们通过使用微阵列数据扩展转录因子基因的核心基因网络来验证这种方法。在一个应用示例中,我们识别出与癌症进展显著相关的生物过程(BP)基因本体(GO)术语。该任务是通过使用与结直肠癌途径相关的核心基因网络和RNA测序数据,分析通过GNCE推断出的基因网络来完成的。