Köhler Tobias, Feoktystov Artem, Petracic Oleg, Nandakumaran Nileena, Cervellino Antonio, Brückel Thomas
Jülich Centre for Neutron Science JCNS at Heinz Maier-Leibnitz Zentrum MLZ, Forschungszentrum Jülich GmbH, 85748 Garching, Germany.
Jülich Centre for Neutron Science JCNS-2 and Peter Grünberg Institute PGI-4, JARA-FIT, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
J Appl Crystallogr. 2021 Nov 16;54(Pt 6):1719-1729. doi: 10.1107/S1600576721010128. eCollection 2021 Dec 1.
Iron oxide nanoparticles find a wide variety of applications, including targeted drug delivery and hyperthermia in advanced cancer treatment methods. An important property of these particles is their maximum net magnetization, which has been repeatedly reported to be drastically lower than the bulk reference value. Previous studies have shown that planar lattice defects known as antiphase boundaries (APBs) have an important influence on the particle magnetization. The influence of APBs on the atomic spin structure of nanoparticles with the γ-FeO composition is examined via Monte Carlo simulations, explicitly considering dipole-dipole interactions between the magnetic moments that have previously only been approximated. For a single APB passing through the particle centre, a reduction in the magnetization of 3.9% (for 9 nm particles) to 7.9% (for 5 nm particles) is found in saturation fields of 1.5 T compared with a particle without this defect. Additionally, on the basis of Debye scattering equation simulations, the influence of APBs on X-ray powder diffraction patterns is shown. The Fourier transform of the APB peak profile is developed to be used in a whole powder pattern modelling approach to determine the presence of APBs and quantify them by fits to powder diffraction patterns. This is demonstrated on experimental data, where it could be shown that the number of APBs is related to the observed reduction in magnetization.
氧化铁纳米颗粒有广泛的应用,包括在先进癌症治疗方法中的靶向药物递送和热疗。这些颗粒的一个重要特性是它们的最大净磁化强度,此前有多次报道称该值远低于体相参考值。先前的研究表明,被称为反相畴界(APB)的平面晶格缺陷对颗粒磁化有重要影响。通过蒙特卡罗模拟研究了APB对具有γ-FeO成分的纳米颗粒原子自旋结构的影响,明确考虑了此前仅作近似处理的磁矩之间的偶极-偶极相互作用。对于一个穿过颗粒中心的单个APB,在1.5 T的饱和场中,与没有这种缺陷的颗粒相比,发现磁化强度降低了3.9%(对于9 nm颗粒)至7.9%(对于5 nm颗粒)。此外,基于德拜散射方程模拟,展示了APB对X射线粉末衍射图谱的影响。APB峰轮廓的傅里叶变换被开发出来,用于全粉末图谱建模方法,以确定APB的存在并通过拟合粉末衍射图谱对其进行量化。这在实验数据上得到了证明,结果表明APB的数量与观察到的磁化强度降低有关。
J Appl Crystallogr. 2021-11-16
Nanoscale. 2021-4-14
Materials (Basel). 2020-10-30
Materials (Basel). 2019-11-28
Nanomaterials (Basel). 2019-12-23
IUCrJ. 2019-1-1
Adv Sci (Weinh). 2020-6-8
Nat Commun. 2023-11-15
J Appl Crystallogr. 2022-11-4
J Appl Crystallogr. 2022-11-4
Nanoscale. 2021-4-14
J Phys Condens Matter. 2021-4-23
IUCrJ. 2019-1-1
J Magn Magn Mater. 2009-7
Colloids Surf B Biointerfaces. 2015-2-1
J Phys Condens Matter. 2014-2-19
J Phys Condens Matter. 2013-12-4