Department of Chemistry, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States.
The RNA Institute, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States.
Anal Chem. 2022 Jan 18;94(2):1195-1202. doi: 10.1021/acs.analchem.1c04379. Epub 2021 Dec 29.
Here, we report a biomarker-free detection of various biological targets through a programmed machine learning algorithm and an automated computational selection process termed algorithmically guided optical nanosensor selector (AGONS). The optical data processed/used by algorithms are obtained through a nanosensor array selected from a library of nanosensors through AGONS. The nanosensors are assembled using two-dimensional nanoparticles (2D-nps) and fluorescently labeled single-stranded DNAs (F-ssDNAs) with random sequences. Both 2D-np and F-ssDNA components are cost-efficient and easy to synthesize, allowing for scaled-up data collection essential for machine learning modeling. The nanosensor library was subjected to various target groups, including proteins, breast cancer cells, and lethal-7 (let-7) miRNA mimics. We have demonstrated that AGONS could select the most essential nanosensors while achieving 100% predictive accuracy in all cases. With this approach, we demonstrate that machine learning can guide the design of nanosensor arrays with greater predictive accuracy while minimizing manpower, material cost, computational resources, instrumentation usage, and time. The biomarker-free detection attribute makes this approach readily available for biological targets without any detectable biomarker. We believe that AGONS can guide optical nanosensor array setups, opening broader opportunities through a biomarker-free detection approach for most challenging biological targets.
在这里,我们通过一种称为算法引导的光学纳米传感器选择器(AGONS)的程序化机器学习算法和自动化计算选择过程,报告了对各种生物靶标的无生物标志物检测。算法处理/使用的光学数据是通过 AGONS 从纳米传感器库中选择的纳米传感器阵列获得的。纳米传感器是使用二维纳米颗粒(2D-np)和带有随机序列的荧光标记的单链 DNA(F-ssDNA)组装而成的。2D-np 和 F-ssDNA 组件都具有成本效益且易于合成,允许进行规模化的数据收集,这对于机器学习建模至关重要。纳米传感器库经过了包括蛋白质、乳腺癌细胞和致死-7(let-7)miRNA 模拟物在内的各种靶标群体的测试。我们已经证明,AGONS 可以选择最基本的纳米传感器,同时在所有情况下实现 100%的预测准确性。通过这种方法,我们证明了机器学习可以在最小化人力、材料成本、计算资源、仪器使用和时间的情况下,指导具有更高预测准确性的纳米传感器阵列的设计。无生物标志物检测的属性使得这种方法可用于任何没有可检测生物标志物的生物靶标。我们相信,AGONS 可以指导光学纳米传感器阵列的设置,通过无生物标志物检测方法为大多数具有挑战性的生物靶标开辟更广泛的机会。