Suppr超能文献

用于精准乳腺癌诊断和纳米颗粒细胞内化预测的机器学习

Machine Learning for Precision Breast Cancer Diagnosis and Prediction of the Nanoparticle Cellular Internalization.

作者信息

Alafeef Maha, Srivastava Indrajit, Pan Dipanjan

机构信息

Bioengineering Department, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

Biomedical Engineering Department, Jordan University of Science and Technology, Irbid 22110, Jordan.

出版信息

ACS Sens. 2020 Jun 26;5(6):1689-1698. doi: 10.1021/acssensors.0c00329. Epub 2020 Jun 17.

Abstract

In the field of theranostics, diagnostic nanoparticles are designed to collect highly patient-selective disease profiles, which is then leveraged by a set of nanotherapeutics to improve the therapeutic results. Despite their early promise, high interpatient and intratumoral heterogeneities make any rational design and analysis of these theranostics platforms extremely problematic. Recent advances in deep-learning-based tools may help bridge this gap, using pattern recognition algorithms for better diagnostic precision and therapeutic outcome. Triple-negative breast cancer (TNBC) is a conundrum because of the complex molecular diversity, making its diagnosis and therapy challenging. To address these challenges, we propose a method to predict the cellular internalization of nanoparticles (NPs) against different cancer stages using artificial intelligence. Here, we demonstrate for the first time that a combination of machine-learning (ML) algorithm and characteristic cellular uptake responses for individual cancer cell types can be successfully used to classify various cancer cell types. Utilizing this approach, we can optimize the nanomaterials to get an optimum structure-internalization response for a given particle. This methodology predicted the structure-internalization response of the evaluated nanoparticles with remarkable accuracy ( = 0.9). We anticipate that it can reduce the effort by minimizing the number of nanoparticles that need to be tested and could be utilized as a screening tool for designing nanotherapeutics. Following this, we have proposed a diagnostic nanomaterial-based platform used to assemble a patient-specific cancer profile with the assistance of machine learning (ML). The platform is composed of eight carbon nanoparticles (CNPs) with multifarious surface chemistries that can differentiate healthy breast cells from cancerous cells and then subclassify TNBC cells vs non-TNBC cells, within the TNBC group. The artificial neural network (ANN) algorithm has been successfully used in identifying the type of cancer cells from 36 unknown cancer samples with an overall accuracy of >98%, providing potential applications in cancer diagnostics.

摘要

在诊疗一体化领域,诊断性纳米颗粒旨在收集高度针对患者的疾病特征,然后由一组纳米治疗剂利用这些特征来改善治疗效果。尽管它们早期展现出了潜力,但患者间和肿瘤内的高度异质性使得对这些诊疗一体化平台进行任何合理的设计和分析都极具问题。基于深度学习的工具的最新进展可能有助于弥合这一差距,利用模式识别算法提高诊断精度和治疗效果。三阴性乳腺癌(TNBC)是一个难题,因为其分子多样性复杂,使其诊断和治疗具有挑战性。为应对这些挑战,我们提出了一种利用人工智能预测纳米颗粒(NPs)针对不同癌症阶段的细胞内化情况的方法。在此,我们首次证明,机器学习(ML)算法与个体癌细胞类型的特征性细胞摄取反应相结合,可成功用于对各种癌细胞类型进行分类。利用这种方法,我们可以优化纳米材料,以获得给定颗粒的最佳结构 - 内化反应。该方法以极高的准确率(= 0.9)预测了所评估纳米颗粒的结构 - 内化反应。我们预计,它可以通过最小化需要测试的纳米颗粒数量来减少工作量,并可作为设计纳米治疗剂的筛选工具。在此之后,我们提出了一种基于诊断性纳米材料的平台,该平台借助机器学习(ML)来组装患者特异性的癌症特征。该平台由八个具有多种表面化学性质的碳纳米颗粒(CNPs)组成,这些碳纳米颗粒可以区分健康乳腺细胞和癌细胞,然后在TNBC组内将TNBC细胞与非TNBC细胞进行亚分类。人工神经网络(ANN)算法已成功用于从36个未知癌症样本中识别癌细胞类型,总体准确率> 98%,为癌症诊断提供了潜在应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验