Suppr超能文献

机器学习在纳米科学中的应用:小尺度上的大数据

Machine Learning in Nanoscience: Big Data at Small Scales.

机构信息

Department of Mechanical Engineering, Physics Department, and Division of Materials Science and Engineering , Boston University , Boston , Massachusetts 02215 , United States.

U.S. Naval Research Laboratory , Washington , DC 20375 , United States.

出版信息

Nano Lett. 2020 Jan 8;20(1):2-10. doi: 10.1021/acs.nanolett.9b04090. Epub 2019 Dec 9.

Abstract

Recent advances in machine learning (ML) offer new tools to extract new insights from large data sets and to acquire small data sets more effectively. Researchers in nanoscience are experimenting with these tools to tackle challenges in many fields. In addition to ML's advancement of nanoscience, nanoscience provides the foundation for neuromorphic computing hardware to expand the implementation of ML algorithms. In this Mini Review, we highlight some recent efforts to connect the ML and nanoscience communities by focusing on three types of interaction: (1) using ML to analyze and extract new insights from large nanoscience data sets, (2) applying ML to accelerate material discovery, including the use of active learning to guide experimental design, and (3) the nanoscience of memristive devices to realize hardware tailored for ML. We conclude with a discussion of challenges and opportunities for future interactions between nanoscience and ML researchers.

摘要

近年来,机器学习(ML)的进展为从大型数据集提取新见解和更有效地获取小数据集提供了新工具。纳米科学研究人员正在尝试使用这些工具来解决许多领域的挑战。除了 ML 对纳米科学的推动,纳米科学还为神经形态计算硬件提供了基础,以扩展 ML 算法的实现。在这篇 Mini Review 中,我们通过关注三种类型的相互作用,强调了将 ML 和纳米科学社区联系起来的一些最新努力:(1)使用 ML 分析和提取大型纳米科学数据集的新见解,(2)应用 ML 加速材料发现,包括使用主动学习来指导实验设计,以及(3)忆阻器设备的纳米科学,以实现针对 ML 的硬件定制。我们最后讨论了纳米科学和 ML 研究人员之间未来相互作用的挑战和机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验