Suppr超能文献

更新范式:细胞色素 P450 中的氧化还原伙伴结合和构象动力学。

Updating the Paradigm: Redox Partner Binding and Conformational Dynamics in Cytochromes P450.

机构信息

Departments of Molecular Biology & Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States.

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

出版信息

Acc Chem Res. 2022 Feb 1;55(3):373-380. doi: 10.1021/acs.accounts.1c00632. Epub 2021 Dec 29.

Abstract

This Account summarizes recent findings centered on the role that redox partner binding, allostery, and conformational dynamics plays in cytochrome P450 proton coupled electron transfer. P450s are one of Nature's largest enzyme families and it is not uncommon to find a P450 wherever substrate oxidation is required in the formation of essential molecules critical to the life of the organism or in xenobiotic detoxification. P450s can operate on a remarkably large range of substrates from the very small to the very large, yet the overall P450 three-dimensional structure is conserved. Given this conservation of structure, it is generally assumed that the basic catalytic mechanism is conserved. In nearly all P450s, the O O-O bond must be cleaved heterolytically enabling one oxygen atom, the distal oxygen, to depart as water and leave behind a heme iron-linked O atom as the powerful oxidant that is used to activate the nearby substrate. For this process to proceed efficiently, externally supplied electrons and protons are required. Two protons must be added to the departing O atom while an electron is transferred from a redox partner that typically contains either a FeS or FMN redox center. The paradigm P450 used to unravel the details of these mechanisms has been the bacterial CYP101A1 or P450cam. P450cam is specific for its own FeS redox partner, putidaredoxin or Pdx, and it has long been postulated that Pdx plays an effector/allosteric role by possibly switching P450cam to an active conformation. Crystal structures, spectroscopic data, and direct binding experiments of the P450cam-Pdx complex provide some answers. Pdx shifts the conformation of P450cam to a more open state, a transition that is postulated to trigger the proton relay network required for O activation. An essential part of this proton relay network is a highly conserved Asp (sometimes Glu) that is known to be critical for activity in a number of P450s. How this Asp and proton delivery networks are connected to redox partner binding is quite simple. In the closed state, this Asp is tied down by salt bridges, but these salt bridges are ruptured when Pdx binds, leaving the Asp free to serve its role in proton transfer. An alternative hypothesis suggests that a specific proton relay network is not really necessary. In this scenario, the Asp plays a structural role in the open/close transition and merely opening the active site access channel is sufficient to enable solvent protons in for O protonation. Experiments designed to test these various hypotheses have revealed some surprises in both P450cam and other bacterial P450s. Molecular dynamics and crystallography show that P450cam can undergo rather significant conformational gymnastics that result in a large restructuring of the active site requiring multiple / proline isomerizations. It also has been found that X-ray driven substrate hydroxylation is a useful tool for better understanding the role that the essential Asp and surrounding residues play in catalysis. Here we summarize these recent results which provide a much more dynamic picture of P450 catalysis.

摘要

本账户总结了最近的研究发现,这些发现集中在氧化还原伴侣结合、变构和构象动力学在细胞色素 P450 质子偶联电子转移中的作用。P450 是自然界最大的酶家族之一,在需要底物氧化以形成对生物体生命至关重要的分子或外来化合物解毒的地方,通常都可以找到 P450。P450 可以作用于非常大的底物范围,从非常小到非常大,但总体 P450 三维结构是保守的。鉴于这种结构的保守性,通常认为基本的催化机制是保守的。在几乎所有的 P450 中,O-O 键必须通过异裂裂解,使一个氧原子,即远端氧,作为水离开,并在留下一个与血红素铁相连的 O 原子作为强大的氧化剂,用于激活附近的底物。为了使这个过程有效地进行,需要外部供应电子和质子。两个质子必须添加到离开的 O 原子上,同时电子从通常包含 FeS 或 FMN 氧化还原中心的氧化还原伴侣转移。用于揭示这些机制细节的范例 P450 是细菌 CYP101A1 或 P450cam。P450cam 特异性识别其自身的 FeS 氧化还原伴侣,即 putidaredoxin 或 Pdx,长期以来一直假设 Pdx 通过可能将 P450cam 切换到活性构象来发挥效应物/变构作用。P450cam-Pdx 复合物的晶体结构、光谱数据和直接结合实验提供了一些答案。Pdx 使 P450cam 的构象向更开放的状态转变,这种转变被假设为触发 O 激活所需的质子传递网络。该质子传递网络的一个重要组成部分是高度保守的天冬氨酸(有时是谷氨酸),已知该氨基酸对许多 P450 的活性至关重要。这种天冬氨酸和质子传递网络与氧化还原伴侣结合的连接方式非常简单。在封闭状态下,这个天冬氨酸被盐桥束缚,但当 Pdx 结合时,这些盐桥被打破,使天冬氨酸能够自由发挥其在质子传递中的作用。另一种假设认为,特定的质子传递网络并不是真正必需的。在这种情况下,天冬氨酸在开/关构象转变中起着结构作用,仅仅打开活性位点的进入通道就足以使溶剂质子进入进行 O 质子化。为了测试这些各种假设而设计的实验在 P450cam 和其他细菌 P450 中都揭示了一些令人惊讶的结果。分子动力学和晶体学表明,P450cam 可以经历相当大的构象变化,导致活性位点的大量重构,需要多次脯氨酸异构化。还发现,X 射线驱动的底物羟化是更好地理解必需的天冬氨酸和周围残基在催化中的作用的有用工具。在这里,我们总结了这些最近的结果,为 P450 催化提供了一个更加动态的画面。

相似文献

4
Conformational selectivity in cytochrome P450 redox partner interactions.细胞色素P450氧化还原伴侣相互作用中的构象选择性
Proc Natl Acad Sci U S A. 2016 Aug 2;113(31):8723-8. doi: 10.1073/pnas.1606474113. Epub 2016 Jul 20.
10
Proton Relay Network in the Bacterial P450s: CYP101A1 and CYP101D1.细菌 P450 中的质子传递网络:CYP101A1 和 CYP101D1。
Biochemistry. 2020 Aug 11;59(31):2896-2902. doi: 10.1021/acs.biochem.0c00329. Epub 2020 Jul 27.

引用本文的文献

4
Electron transfer in biological systems.生物系统中的电子转移。
J Biol Inorg Chem. 2024 Dec;29(7-8):641-683. doi: 10.1007/s00775-024-02076-8. Epub 2024 Oct 18.

本文引用的文献

2
Proton Relay Network in the Bacterial P450s: CYP101A1 and CYP101D1.细菌 P450 中的质子传递网络:CYP101A1 和 CYP101D1。
Biochemistry. 2020 Aug 11;59(31):2896-2902. doi: 10.1021/acs.biochem.0c00329. Epub 2020 Jul 27.
6
9
A new look at the role of thiolate ligation in cytochrome P450.硫醇盐连接在细胞色素P450中的作用新视角。
J Biol Inorg Chem. 2017 Apr;22(2-3):209-220. doi: 10.1007/s00775-016-1430-3. Epub 2017 Jan 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验