文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

全球土壤温度图。

Global maps of soil temperature.

机构信息

Research Group PLECO (Plants and Ecosystems), University of Antwerp, Wilrijk, Belgium.

Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.

出版信息

Glob Chang Biol. 2022 May;28(9):3110-3144. doi: 10.1111/gcb.16060. Epub 2022 Feb 11.


DOI:10.1111/gcb.16060
PMID:34967074
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9303923/
Abstract

Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.

摘要

全球变化生态学的研究主要依赖于从地面以上约 2 米的开阔区域的空气温度估算得出的全球气候格网。这些气候格网无法反映植被冠层以下和靠近地面的条件,而关键的生态系统功能和大多数陆地物种都存在于这些条件下。在这里,我们提供了全球土壤温度和生物气候变量的地图,分辨率为 1 公里,深度为 0-5 厘米和 5-15 厘米。这些地图是通过计算基于世界各地主要陆地生物群系中超过 1200 个 1 公里像素(从 8519 个独特的温度传感器汇总)的时间序列与 ERA5-Land(欧洲中期天气预报中心的大气再分析)的粗粒度空气温度估算之间的差异(即偏移量)来创建的。我们表明,平均年土壤温度与相应的网格化空气温度明显不同,最大可达 10°C(平均值为 3.0±2.1°C),并且在生物群系和季节之间存在很大差异。全年来看,寒冷和/或干燥生物群系的土壤温度比网格化空气温度高得多(+3.6±2.3°C),而温暖和潮湿环境中的土壤平均温度略低(-0.7±2.3°C)。观测到的大量且具有生物群系特异性的偏移量强调,当使用空气温度而不是土壤温度时,对近地表生物多样性和生态系统功能的气候和气候变化的预测影响会被不准确地评估,特别是在寒冷环境中。这里提供的与全球土壤相关的生物气候变量是生态和相关学科应用的重要一步。然而,我们强调需要通过收集更多的小气候条件的原位测量来填补剩余的地理空白,以进一步提高生态应用中全球土壤温度产品的时空分辨率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/912f/9303923/b2e34feadfa3/GCB-28-3110-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/912f/9303923/fd61fbab38ed/GCB-28-3110-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/912f/9303923/f38615248097/GCB-28-3110-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/912f/9303923/1908661938e5/GCB-28-3110-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/912f/9303923/480dcf328d31/GCB-28-3110-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/912f/9303923/585582cdc147/GCB-28-3110-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/912f/9303923/b2e34feadfa3/GCB-28-3110-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/912f/9303923/fd61fbab38ed/GCB-28-3110-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/912f/9303923/f38615248097/GCB-28-3110-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/912f/9303923/1908661938e5/GCB-28-3110-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/912f/9303923/480dcf328d31/GCB-28-3110-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/912f/9303923/585582cdc147/GCB-28-3110-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/912f/9303923/b2e34feadfa3/GCB-28-3110-g001.jpg

相似文献

[1]
Global maps of soil temperature.

Glob Chang Biol. 2022-5

[2]
ForestTemp - Sub-canopy microclimate temperatures of European forests.

Glob Chang Biol. 2021-12

[3]
SoilTemp: A global database of near-surface temperature.

Glob Chang Biol. 2020-11

[4]
The role of vegetation structural diversity in regulating the microclimate of human-modified tropical ecosystems.

J Environ Manage. 2024-6

[5]
Patterns of tropical forest understory temperatures.

Nat Commun. 2024-1-23

[6]
Predicting future climate at high spatial and temporal resolution.

Glob Chang Biol. 2019-11-16

[7]
Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets.

Ecol Lett. 2012-9-3

[8]
Applied nucleation under high biodiversity silvopastoral system as an adaptive strategy against microclimate extremes in pasture areas.

Int J Biometeorol. 2023-7

[9]
Cold-air pools as microrefugia for ecosystem functions in the face of climate change.

Ecology. 2022-8

[10]
Forest microclimates and climate change: Importance, drivers and future research agenda.

Glob Chang Biol. 2021-6

引用本文的文献

[1]
Soil and forest floor respiration already acclimated to increasing temperatures in a mixed deciduous forest.

Ecol Process. 2025

[2]
Research Bias in Long-Term Monitoring of Antarctic Nearshore Marine and Terrestrial Biota.

Glob Chang Biol. 2025-8

[3]
Pre-Exposure to Chemicals Increases Springtail Vulnerability to High Temperatures.

Glob Chang Biol. 2025-7

[4]
Reproductive Costs Increase With Longer Extreme Heat Events in Collembola.

Ecol Evol. 2025-7-9

[5]
Survival and spread of engineered and associated mycobacteriophage in soil microcosms.

Appl Environ Microbiol. 2025-6-18

[6]
Modelling microclimatic variability in Andean forests of northern Patagonia.

Int J Biometeorol. 2025-6

[7]
Nonlinear microbial thermal response and its implications for abrupt soil organic carbon responses to warming.

Nat Commun. 2025-3-20

[8]
A curated soil fungal dataset to advance fungal ecology and conservation research in Australia and Antarctica.

Sci Data. 2025-2-27

[9]
Niche shifts and localized competitive dynamics influence the persistence and distribution of polyploids in the genus Achillea (Asteraceae).

Ann Bot. 2025-5-9

[10]
Impact of wind speed and soil frost on electricity distribution system reliability.

Heliyon. 2024-12-4

本文引用的文献

[1]
Forest microclimates and climate change: Importance, drivers and future research agenda.

Glob Chang Biol. 2021-6

[2]
Combating ecosystem collapse from the tropics to the Antarctic.

Glob Chang Biol. 2021-5

[3]
Temperature thresholds of ecosystem respiration at a global scale.

Nat Ecol Evol. 2021-4

[4]
Summer warming explains widespread but not uniform greening in the Arctic tundra biome.

Nat Commun. 2020-9-22

[5]
The problem of scale in predicting biological responses to climate.

Glob Chang Biol. 2020-12

[6]
It Is Hot in the Sun: Antarctic Mosses Have High Temperature Optima for Photosynthesis Despite Cold Climate.

Front Plant Sci. 2020-8-7

[7]
Species better track climate warming in the oceans than on land.

Nat Ecol Evol. 2020-5-25

[8]
Forest microclimate dynamics drive plant responses to warming.

Science. 2020-5-15

[9]
Microclimate shifts in a dynamic world.

Science. 2020-5-15

[10]
Temperature-related biodiversity change across temperate marine and terrestrial systems.

Nat Ecol Evol. 2020-5-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索