Research Group PLECO (Plants and Ecosystems), University of Antwerp, Wilrijk, Belgium.
Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.
Glob Chang Biol. 2022 May;28(9):3110-3144. doi: 10.1111/gcb.16060. Epub 2022 Feb 11.
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications.
全球变化生态学的研究主要依赖于从地面以上约 2 米的开阔区域的空气温度估算得出的全球气候格网。这些气候格网无法反映植被冠层以下和靠近地面的条件,而关键的生态系统功能和大多数陆地物种都存在于这些条件下。在这里,我们提供了全球土壤温度和生物气候变量的地图,分辨率为 1 公里,深度为 0-5 厘米和 5-15 厘米。这些地图是通过计算基于世界各地主要陆地生物群系中超过 1200 个 1 公里像素(从 8519 个独特的温度传感器汇总)的时间序列与 ERA5-Land(欧洲中期天气预报中心的大气再分析)的粗粒度空气温度估算之间的差异(即偏移量)来创建的。我们表明,平均年土壤温度与相应的网格化空气温度明显不同,最大可达 10°C(平均值为 3.0±2.1°C),并且在生物群系和季节之间存在很大差异。全年来看,寒冷和/或干燥生物群系的土壤温度比网格化空气温度高得多(+3.6±2.3°C),而温暖和潮湿环境中的土壤平均温度略低(-0.7±2.3°C)。观测到的大量且具有生物群系特异性的偏移量强调,当使用空气温度而不是土壤温度时,对近地表生物多样性和生态系统功能的气候和气候变化的预测影响会被不准确地评估,特别是在寒冷环境中。这里提供的与全球土壤相关的生物气候变量是生态和相关学科应用的重要一步。然而,我们强调需要通过收集更多的小气候条件的原位测量来填补剩余的地理空白,以进一步提高生态应用中全球土壤温度产品的时空分辨率。
Glob Chang Biol. 2022-5
Glob Chang Biol. 2021-12
Glob Chang Biol. 2020-11
Nat Commun. 2024-1-23
Glob Chang Biol. 2019-11-16
Glob Chang Biol. 2021-6
Glob Chang Biol. 2025-8
Glob Chang Biol. 2025-7
Ecol Evol. 2025-7-9
Appl Environ Microbiol. 2025-6-18
Int J Biometeorol. 2025-6
Glob Chang Biol. 2021-6
Glob Chang Biol. 2021-5
Nat Ecol Evol. 2021-4
Glob Chang Biol. 2020-12
Nat Ecol Evol. 2020-5-25
Science. 2020-5-15
Science. 2020-5-15
Nat Ecol Evol. 2020-5-4