Fierke Jonas, Putzenlechner Birgitta, Simon Alois, Gowda Juan Haridis, Reiter Ernesto Juan, Walentowski Helge, Kappas Martin
Institute of Geography, University of Goettingen, Goldschmidtstraße 3, 37077, Goettingen, Germany.
Faculty of Resource Management, University of Applied Science and Art, Daimlerstraße 2, 37075, Goettingen, Germany.
Int J Biometeorol. 2025 Jun;69(6):1279-1295. doi: 10.1007/s00484-025-02891-x. Epub 2025 Mar 25.
Information on microclimatic conditions beneath canopies is key to understanding small-scale ecological processes, especially concerning the response of biodiversity to climate change. In north-western Patagonia, where data on climate-driven species distribution are scarce, our study provides valuable insights by providing microclimatic models covering spatiotemporal dynamics at 30 × 30 m resolution. Applying in-situ data from 2022 to 2024, we employed a random forest-based regression to assess the impact of several biophysical predictor variables describing terrain and vegetation properties on four microclimatic response variables at three vertical levels within forests. We also interpolated this data spatiotemporally, using statistical downscaling of ERA5 data. Our analysis reveals that the influence of the predictor variables varies strongly by month and response variable. Moreover, significant variability was observed between the models and months regarding their explanatory power and error range. For instance, the model predicting maximum air temperature at a 2 m height achieved an R² of 0.88 and an RMSE of 1.5 °C, while the model for minimum air temperature resulted in an R² of 0.73 and an RMSE of 1.8 °C. Our model approach provides a benchmark for spatiotemporal projections in this data-scarce region, aligned with the climate normal from 1981 to 2010. Future refinement could benefit from data on snow cover, land use and land cover, soil, as well as structural information on vegetation over an extended period, to enhance the dynamical aspects of microclimatic modelling. We are confident that our present model will substantially enhance possibilities to analyse species distribution across vegetation types and terrain-related features within the area.
树冠层下微气候条件的信息是理解小规模生态过程的关键,尤其是在生物多样性对气候变化的响应方面。在巴塔哥尼亚西北部,气候驱动物种分布的数据稀缺,我们的研究通过提供30×30米分辨率的涵盖时空动态的微气候模型,提供了有价值的见解。利用2022年至2024年的实地数据,我们采用基于随机森林的回归分析,评估了描述地形和植被属性的几个生物物理预测变量对森林内三个垂直层次上四个微气候响应变量的影响。我们还使用ERA5数据的统计降尺度对这些数据进行了时空插值。我们的分析表明,预测变量的影响因月份和响应变量而有很大差异。此外,模型与月份之间在解释力和误差范围方面存在显著差异。例如,预测2米高度处最高气温的模型R²为0.88,RMSE为1.5°C,而预测最低气温的模型R²为0.73,RMSE为1.8°C。我们的模型方法为这个数据稀缺地区的时空预测提供了一个基准,与1981年至2010年的气候正常值一致。未来的改进可以受益于积雪、土地利用和土地覆盖、土壤以及长期植被结构信息的数据,以增强微气候建模的动态方面。我们相信,我们目前的模型将大大增强分析该地区植被类型和地形相关特征的物种分布的可能性。