Prampolini Giacomo, Greff da Silveira Leandro, Vilhena J G, Livotto Paolo Roberto
Istituto di Chimica dei Composti OrganoMetallici (ICCOM-CNR), Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, CEP 91 501-970 Porto Alegre, Brazil.
J Phys Chem Lett. 2022 Jan 13;13(1):243-250. doi: 10.1021/acs.jpclett.1c03517. Epub 2021 Dec 30.
design of self-assembled materials hinges upon our ability to relate macroscopic properties to individual building blocks, thus characterizing in such supramolecular architectures a wide range of observables at varied time/length scales. This work demonstrates that quantum mechanical derived force fields (QMD-FFs) do satisfy this requisite and, most importantly, do so in a predictive manner. To this end, a specific FF, built solely based on the knowledge of the target molecular structure, is employed to reproduce the spontaneous transition to an ordered liquid crystal phase. The simulations deliver a multiscale portrait of such self-assembly processes, where conformational changes within the individual building blocks are intertwined with a 200 ns ensemble reorganization. The extensive characterization provided not only is in quantitative agreement with the experiment but also connects the time/length scales at which it was performed. Realizing QMD-FF predictive power and unmatched accuracy stands as an important leap forward for the bottom-up design of advanced supramolecular materials.
自组装材料的设计取决于我们将宏观性质与单个构建单元联系起来的能力,从而在这种超分子结构中表征不同时间/长度尺度下的各种可观测物。这项工作表明,量子力学衍生的力场(QMD-FFs)确实满足这一要求,最重要的是,是以一种预测性的方式满足这一要求。为此,一个仅基于目标分子结构知识构建的特定力场被用于重现向有序液晶相的自发转变。模拟给出了这种自组装过程的多尺度图景,其中单个构建单元内的构象变化与200纳秒的整体重组相互交织。所提供的广泛表征不仅在定量上与实验一致,而且还连接了进行实验的时间/长度尺度。认识到QMD-FF的预测能力和无与伦比的准确性是先进超分子材料自下而上设计的一个重要飞跃。