Department of Chemistry, North Carolina State University, Raleigh, NC 27695.
Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
Proc Natl Acad Sci U S A. 2022 Jan 4;119(1). doi: 10.1073/pnas.2113770119.
Deoxypodophyllotoxin contains a core of four fused rings (A to D) with three consecutive chiral centers, the last being created by the attachment of a peripheral trimethoxyphenyl ring (E) to ring C. Previous studies have suggested that the iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase, deoxypodophyllotoxin synthase (DPS), catalyzes the oxidative coupling of ring B and ring E to form ring C and complete the tetracyclic core. Despite recent efforts to deploy DPS in the preparation of deoxypodophyllotoxin analogs, the mechanism underlying the regio- and stereoselectivity of this cyclization event has not been elucidated. Herein, we report 1) two structures of DPS in complex with 2OG and (±)-yatein, 2) in vitro analysis of enzymatic reactivity with substrate analogs, and 3) model reactions addressing DPS's catalytic mechanism. The results disfavor a prior proposal of on-pathway benzylic hydroxylation. Rather, the DPS-catalyzed cyclization likely proceeds by hydrogen atom abstraction from C7', oxidation of the benzylic radical to a carbocation, Friedel-Crafts-like ring closure, and rearomatization of ring B by C6 deprotonation. This mechanism adds to the known pathways for transformation of the carbon-centered radical in Fe/2OG enzymes and suggests what types of substrate modification are likely tolerable in DPS-catalyzed production of deoxypodophyllotoxin analogs.
脱氧鬼臼毒素含有由四个稠合环(A 到 D)组成的核心,其中三个连续的手性中心,最后一个由外围三甲氧基苯基环(E)连接到 C 环形成。先前的研究表明,铁(II)和 2-氧戊二酸依赖性(Fe/2OG)加氧酶,脱氧鬼臼毒素合酶(DPS),催化 B 环和 E 环的氧化偶联,形成 C 环并完成四环核心的构建。尽管最近努力在脱氧鬼臼毒素类似物的制备中部署 DPS,但该环化反应的区域和立体选择性的机制尚未阐明。在此,我们报告了 1)与 2OG 和(±)-蝙蝠葛苏林复合物的 DPS 的两种结构,2)用底物类似物进行的酶反应性的体外分析,以及 3)解决 DPS 催化机制的模型反应。结果不支持先前提出的途径中苄基羟化的建议。相反,DPS 催化的环化可能通过 C7'上的氢原子的抽取、苄基自由基的氧化生成碳正离子、Friedel-Crafts 型环闭合以及 C6 的去质子化使 B 环重新芳构化进行。该机制增加了已知的 Fe/2OG 酶中碳中心自由基转化的途径,并表明在 DPS 催化的脱氧鬼臼毒素类似物的生产中可能耐受的底物修饰类型。