Children's Hospital Los Angeles; the University of Southern California, Los Angeles, CA.
University of Colorado Boulder, Boulder, CO.
J Pediatr. 2022 Apr;243:130-134.e2. doi: 10.1016/j.jpeds.2021.12.058. Epub 2021 Dec 28.
To develop and validate a prediction model for fat mass in infants ≤12 kg using easily accessible measurements such as weight and length.
We used data from a pooled cohort of 359 infants age 1-24 months and weighing 3-12 kg from 3 studies across Southern California and New York City. The training data set (75% of the cohort) included 269 infants and the testing data set (25% of the cohort) included 90 infants age 1-24 months. Quantitative magnetic resonance was used as the standard measure for fat mass. We used multivariable linear regression analysis, with backwards selection of predictor variables and fractional polynomials for nonlinear relationships to predict infant fat mass (from which lean mass can be estimated by subtracting resulting estimates from total mass) in the training data set. We used 5-fold cross-validation to examine overfitting and generalizability of the model's predictive performance. Finally, we tested the adjusted model on the testing data set.
The final model included weight, length, sex, and age, and had high predictive ability for fat mass with good calibration of observed and predicted values in the training data set (optimism-adjusted R: 92.1%). Performance on the test dataset showed promising generalizability (adjusted R: 85.4%). The mean difference between observed and predicted values in the testing dataset was 0.015 kg (-0.043 to -0.072 kg; 0.7% of the mean).
Our model accurately predicted infant fat mass and could be used to improve the accuracy of assessments of infant body composition for effective early identification, surveillance, prevention, and management of obesity and future chronic disease risk.
利用体重和身长等易于获取的测量值,开发并验证适用于≤12kg 婴儿的体脂预测模型。
我们使用了来自加利福尼亚州南部和纽约市的 3 项研究中年龄为 1-24 个月、体重为 3-12kg 的 359 名婴儿的数据。训练数据集(队列的 75%)包含 269 名婴儿,测试数据集(队列的 25%)包含 90 名 1-24 个月大的婴儿。定量磁共振被用作体脂的标准测量方法。我们使用多元线性回归分析,通过向后选择预测变量和分数多项式来预测婴儿的体脂(从总质量中减去得出的估计值即可估计出瘦体重),这在训练数据集中进行。我们使用 5 倍交叉验证来检查模型预测性能的过拟合和泛化能力。最后,我们在测试数据集上测试了调整后的模型。
最终模型包括体重、身长、性别和年龄,对体脂具有较高的预测能力,并且在训练数据集中观察值和预测值的校准良好(调整后的 R:92.1%)。在测试数据集上的性能显示出良好的泛化能力(调整后的 R:85.4%)。测试数据集上观察值与预测值之间的平均差值为 0.015kg(-0.043 至-0.072kg;均值的 0.7%)。
我们的模型能够准确预测婴儿的体脂,可以用于提高婴儿身体成分评估的准确性,从而有效早期识别、监测、预防和管理肥胖以及未来的慢性疾病风险。