Suppr超能文献

青少年的睾丸激素、雌二醇和雄激素受体基因型与杏仁核亚区之间的关联。

Associations between testosterone, estradiol, and androgen receptor genotype with amygdala subregions in adolescents.

机构信息

Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA 90033, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089-2520, USA.

Division of Humanities and Social Sciences, California Institute of Technology, Pasadena, CA 91125, USA.

出版信息

Psychoneuroendocrinology. 2022 Mar;137:105604. doi: 10.1016/j.psyneuen.2021.105604. Epub 2021 Nov 24.

Abstract

Much is known about the development of the whole amygdala, but less is known about its structurally and functionally diverse subregions. One notable distinguishing feature is their wide range of androgen and estrogen receptor densities. Given the rise in pubertal hormones during adolescence, sex steroid levels as well as receptor sensitivity could influence age-related subregion volumes. Therefore, our goal was to evaluate the associations between the total amygdala and its subregion volumes in relation to sex hormones - estradiol and free testosterone (FT) - as a function of age and genetic differences in androgen receptor (AR) sensitivity in a sample of 297 adolescents (46% female). In males, we found small effects of FT-by-age interactions in the total amygdala, portions of the basolateral complex, and the cortical and medial nuclei (CMN), with the CMN effects being moderated by AR sensitivity. For females, small effects were seen with increased genetic AR sensitivity relating to smaller basolateral complexes. However, none of these small effects passed multiple comparisons. Future larger studies are necessary to replicate these small, yet possibly meaningful effects of FT-by-age associations and modulation by AR sensitivity on amygdala development to ultimately determine if they contribute to known sex differences in emotional neurodevelopment.

摘要

已知关于整个杏仁核的发育有很多信息,但对其结构和功能多样的亚区知之甚少。一个显著的区别特征是它们具有广泛的雄激素和雌激素受体密度。鉴于青春期促性腺激素的增加,性激素水平以及受体敏感性可能会影响与年龄相关的亚区体积。因此,我们的目标是评估 297 名青少年(46%为女性)样本中总杏仁核及其亚区体积与性激素(雌二醇和游离睾酮(FT))之间的关系,以及雄激素受体(AR)敏感性的遗传差异与年龄的关系。在男性中,我们发现 FT 与年龄的相互作用对总杏仁核、基底外侧复合体的某些部分以及皮质和内侧核(CMN)有较小的影响,而 AR 敏感性调节了 CMN 的影响。对于女性,发现遗传 AR 敏感性增加与较小的基底外侧复合体有关,存在较小的影响。但是,这些小的影响都没有通过多重比较。未来需要更大的研究来复制这些 FT 与年龄相关的关联以及 AR 敏感性对杏仁核发育的调节的小但可能有意义的影响,以最终确定它们是否有助于已知的情绪神经发育中的性别差异。

相似文献

1
Associations between testosterone, estradiol, and androgen receptor genotype with amygdala subregions in adolescents.
Psychoneuroendocrinology. 2022 Mar;137:105604. doi: 10.1016/j.psyneuen.2021.105604. Epub 2021 Nov 24.
4
Sex steroid levels and AD-like pathology in 3xTgAD mice.
J Neuroendocrinol. 2013 Feb;25(2):131-144. doi: 10.1111/j.1365-2826.2012.02374.x.
5
Gonadal steroid hormone receptors in the medial amygdala contribute to experience-dependent changes in stress vulnerability.
Psychoneuroendocrinology. 2021 Jul;129:105249. doi: 10.1016/j.psyneuen.2021.105249. Epub 2021 May 3.
6
Depot differences in steroid receptor expression in adipose tissue: possible role of the local steroid milieu.
Am J Physiol Endocrinol Metab. 2005 Jan;288(1):E200-7. doi: 10.1152/ajpendo.00270.2004. Epub 2004 Sep 14.
7
8
Sex hormone levels, genetic androgen receptor polymorphism, and anxiety in ≥50-year-old males.
J Sex Med. 2011 Dec;8(12):3452-64. doi: 10.1111/j.1743-6109.2011.02443.x. Epub 2011 Aug 24.

引用本文的文献

1
Outdoor Air Pollution Is Related to Amygdala Subregion Volume and Apportionment in Early Adolescence.
Biol Psychiatry Glob Open Sci. 2025 Jun 3;5(5):100544. doi: 10.1016/j.bpsgos.2025.100544. eCollection 2025 Sep.
3
Outdoor Air Pollution Relates to Amygdala Subregion Volume and Apportionment in Early Adolescents.
bioRxiv. 2024 Oct 17:2024.10.14.617429. doi: 10.1101/2024.10.14.617429.

本文引用的文献

1
Restructuring of amygdala subregion apportion across adolescence.
Dev Cogn Neurosci. 2021 Apr;48:100883. doi: 10.1016/j.dcn.2020.100883. Epub 2020 Dec 11.
2
Neuroimaging the menstrual cycle: A multimodal systematic review.
Front Neuroendocrinol. 2021 Jan;60:100878. doi: 10.1016/j.yfrne.2020.100878. Epub 2020 Oct 22.
3
Shaping of the Female Human Brain by Sex Hormones: A Review.
Neuroendocrinology. 2021;111(3):183-206. doi: 10.1159/000507083. Epub 2020 Mar 11.
4
Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry.
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3808-3818. doi: 10.1073/pnas.1910842117. Epub 2020 Feb 3.
5
Gender in Endocrine Diseases: Role of Sex Gonadal Hormones.
Int J Endocrinol. 2018 Oct 21;2018:4847376. doi: 10.1155/2018/4847376. eCollection 2018.
6
Sex differences in the developing brain: insights from multimodal neuroimaging.
Neuropsychopharmacology. 2019 Jan;44(1):71-85. doi: 10.1038/s41386-018-0111-z. Epub 2018 Jun 6.
7
Emerging depression in adolescence coincides with accelerated frontal cortical thinning.
J Child Psychol Psychiatry. 2018 Sep;59(9):994-1002. doi: 10.1111/jcpp.12895. Epub 2018 Mar 25.
8
Neuron numbers increase in the human amygdala from birth to adulthood, but not in autism.
Proc Natl Acad Sci U S A. 2018 Apr 3;115(14):3710-3715. doi: 10.1073/pnas.1801912115. Epub 2018 Mar 20.
9
Unraveling age, puberty and testosterone effects on subcortical brain development across adolescence.
Psychoneuroendocrinology. 2018 May;91:105-114. doi: 10.1016/j.psyneuen.2018.02.034. Epub 2018 Mar 8.
10
Development of subcortical volumes across adolescence in males and females: A multisample study of longitudinal changes.
Neuroimage. 2018 May 15;172:194-205. doi: 10.1016/j.neuroimage.2018.01.020. Epub 2018 Feb 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验