Division of Infectious Diseases, Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA.
Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA.
J Biol Chem. 2022 Feb;298(2):101550. doi: 10.1016/j.jbc.2021.101550. Epub 2021 Dec 29.
The malaria-causing parasite Plasmodium falciparum is responsible for over 200 million infections and 400,000 deaths per year. At multiple stages during its complex life cycle, P. falciparum expresses several essential proteins tethered to its surface by glycosylphosphatidylinositol (GPI) anchors, which are critical for biological processes such as parasite egress and reinvasion of host red blood cells. Targeting this pathway therapeutically has the potential to broadly impact parasite development across several life stages. Here, we characterize an upstream component of parasite GPI anchor biosynthesis, the putative phosphomannomutase (PMM) (EC 5.4.2.8), HAD5 (PF3D7_1017400). We confirmed the PMM and phosphoglucomutase activities of purified recombinant HAD5 by developing novel linked enzyme biochemical assays. By regulating the expression of HAD5 in transgenic parasites with a TetR-DOZI-inducible knockdown system, we demonstrated that HAD5 is required for malaria parasite egress and erythrocyte reinvasion, and we assessed the role of HAD5 in GPI anchor synthesis by autoradiography of radiolabeled glucosamine and thin layer chromatography. Finally, we determined the three-dimensional X-ray crystal structure of HAD5 and identified a substrate analog that specifically inhibits HAD5 compared to orthologous human PMMs in a time-dependent manner. These findings demonstrate that the GPI anchor biosynthesis pathway is exceptionally sensitive to inhibition in parasites and that HAD5 has potential as a specific, multistage antimalarial target.
疟原虫寄生虫恶性疟原虫每年导致超过 2 亿例感染和 40 万人死亡。在其复杂生命周期的多个阶段,P. falciparum 表达几种通过糖基磷脂酰肌醇 (GPI) 锚定连接到其表面的必需蛋白质,这些蛋白质对于寄生虫逸出和重新入侵宿主红细胞等生物学过程至关重要。从治疗学角度靶向该途径有可能广泛影响寄生虫在多个生命阶段的发育。在这里,我们描述了寄生虫 GPI 锚生物合成的上游成分,即假定的磷酸甘露糖变位酶 (PMM) (EC 5.4.2.8),HAD5 (PF3D7_1017400)。我们通过开发新的连接酶生化测定法,证实了纯化的重组 HAD5 的 PMM 和磷酸葡萄糖变位酶活性。通过用 TetR-DOZI 诱导的敲低系统调节转基因寄生虫中 HAD5 的表达,我们证明 HAD5 是疟原虫寄生虫逸出和红细胞再入侵所必需的,并且我们通过放射性标记葡萄糖胺的放射自显影和薄层色谱法评估了 HAD5 在 GPI 锚合成中的作用。最后,我们确定了 HAD5 的三维 X 射线晶体结构,并鉴定了一种底物类似物,与同源的人类 PMM 相比,该类似物以时间依赖性方式特异性抑制 HAD5。这些发现表明 GPI 锚生物合成途径对寄生虫的抑制作用非常敏感,并且 HAD5 具有作为特定的、多阶段抗疟靶标的潜力。