Guan Meiling, Wang Miaoyan, Zhanghao Karl, Zhang Xu, Li Meiqi, Liu Wenhui, Niu Jing, Yang Xusan, Chen Long, Jing Zhenli, Zhang Micheal Q, Jin Dayong, Xi Peng, Gao Juntao
Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
UTS-SUStech Joint Research Centre for Biomedical Materials & Devices, Department of Biomedical Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China.
Light Sci Appl. 2022 Jan 1;11(1):4. doi: 10.1038/s41377-021-00689-1.
The orientation of fluorophores can reveal crucial information about the structure and dynamics of their associated subcellular organelles. Despite significant progress in super-resolution, fluorescence polarization microscopy remains limited to unique samples with relatively strong polarization modulation and not applicable to the weak polarization signals in samples due to the excessive background noise. Here we apply optical lock-in detection to amplify the weak polarization modulation with super-resolution. This novel technique, termed optical lock-in detection super-resolution dipole orientation mapping (OLID-SDOM), could achieve a maximum of 100 frames per second and rapid extraction of 2D orientation, and distinguish distance up to 50 nm, making it suitable for monitoring structural dynamics concerning orientation changes in vivo. OLID-SDOM was employed to explore the universal anisotropy of a large variety of GFP-tagged subcellular organelles, including mitochondria, lysosome, Golgi, endosome, etc. We found that OUF (Orientation Uniformity Factor) of OLID-SDOM can be specific for different subcellular organelles, indicating that the anisotropy was related to the function of the organelles, and OUF can potentially be an indicator to distinguish normal and abnormal cells (even cancer cells). Furthermore, dual-color super-resolution OLID-SDOM imaging of lysosomes and actins demonstrates its potential in studying dynamic molecular interactions. The subtle anisotropy changes of expanding and shrinking dendritic spines in live neurons were observed with real-time OLID-SDOM. Revealing previously unobservable fluorescence anisotropy in various samples and indicating their underlying dynamic molecular structural changes, OLID-SDOM expands the toolkit for live cell research.
荧光团的取向可以揭示与其相关的亚细胞器的结构和动力学的关键信息。尽管在超分辨率方面取得了重大进展,但荧光偏振显微镜仍然局限于具有相对较强偏振调制的独特样本,并且由于背景噪声过大而不适用于样本中的弱偏振信号。在这里,我们应用光学锁相检测来放大超分辨率下的弱偏振调制。这种新技术,称为光学锁相检测超分辨率偶极取向映射(OLID-SDOM),可以实现每秒最多100帧,并快速提取二维取向,且能够分辨高达50 nm的距离,使其适用于监测体内取向变化的结构动力学。OLID-SDOM被用于探索多种绿色荧光蛋白标记的亚细胞器的普遍各向异性,包括线粒体、溶酶体、高尔基体、内体等。我们发现OLID-SDOM的OUF(取向均匀性因子)对于不同的亚细胞器具有特异性,这表明各向异性与细胞器的功能有关,并且OUF有可能成为区分正常细胞和异常细胞(甚至癌细胞)的指标。此外,溶酶体和肌动蛋白的双色超分辨率OLID-SDOM成像证明了其在研究动态分子相互作用方面的潜力。通过实时OLID-SDOM观察到了活神经元中扩张和收缩的树突棘细微的各向异性变化。OLID-SDOM揭示了各种样本中以前无法观察到的荧光各向异性,并表明了其潜在的动态分子结构变化,从而扩展了活细胞研究的工具集。