Suppr超能文献

使用发光流通式96孔板分析法评估噬菌体尾丝受体结合蛋白

Evaluating Phage Tail Fiber Receptor-Binding Proteins Using a Luminescent Flow-Through 96-Well Plate Assay.

作者信息

Farquharson Emma L, Lightbown Ashlyn, Pulkkinen Elsi, Russell Téa, Werner Brenda, Nugen Sam R

机构信息

Nugen Research Laboratory, Department of Food Science, Cornell University, Ithaca, NY, United States.

出版信息

Front Microbiol. 2021 Dec 16;12:741304. doi: 10.3389/fmicb.2021.741304. eCollection 2021.

Abstract

Phages have demonstrated significant potential as therapeutics in bacterial disease control and as diagnostics due to their targeted bacterial host range. Host range has typically been defined by plaque assays; an important technique for therapeutic development that relies on the ability of a phage to form a plaque upon a lawn of monoculture bacteria. Plaque assays cannot be used to evaluate a phage's ability to recognize and adsorb to a bacterial strain of interest if the infection process is thwarted post-adsorption or is temporally delayed, and it cannot highlight which phages have the strongest adsorption characteristics. Other techniques, such as classic adsorption assays, are required to define a phage's "adsorptive host range." The issue shared amongst all adsorption assays, however, is that they rely on the use of a complete bacteriophage and thus inherently describe when all adsorption-specific machinery is working together to facilitate bacterial surface adsorption. These techniques cannot be used to examine individual interactions between a singular set of a phage's adsorptive machinery (like long tail fibers, short tail fibers, tail spikes, etc.) and that protein's targeted bacterial surface receptor. To address this gap in knowledge we have developed a high-throughput, filtration-based, bacterial binding assay that can evaluate the adsorptive capability of an individual set of a phage's adsorption machinery. In this manuscript, we used a fusion protein comprised of an N-terminal bioluminescent tag translationally fused to T4's long tail fiber binding tip (gp37) to evaluate and quantify gp37's relative adsorptive strength against the reference collection (ECOR) panel of 72 isolates. Gp37 could adsorb to 61 of the 72 ECOR strains (85%) but coliphage T4 only formed plaques on 8 of the 72 strains (11%). Overlaying these two datasets, we were able to identify ECOR strains incompatible with T4 due to failed adsorption, and strains T4 can adsorb to but is thwarted in replication at a step post-adsorption. While this manuscript only demonstrates our assay's ability to characterize adsorptive capabilities of phage tail fibers, our assay could feasibly be modified to evaluate other adsorption-specific phage proteins.

摘要

由于噬菌体具有靶向细菌宿主范围,它们在控制细菌疾病的治疗和诊断方面已显示出巨大潜力。宿主范围通常通过噬菌斑测定来定义;这是治疗开发的一项重要技术,依赖于噬菌体在单一培养细菌菌苔上形成噬菌斑的能力。如果感染过程在吸附后受阻或暂时延迟,噬菌斑测定就不能用于评估噬菌体识别和吸附目标细菌菌株的能力,而且它也无法突出显示哪些噬菌体具有最强的吸附特性。需要其他技术,如经典吸附测定,来定义噬菌体的“吸附宿主范围”。然而,所有吸附测定都存在的问题是,它们依赖于完整噬菌体的使用,因此本质上描述的是所有吸附特异性机制共同作用以促进细菌表面吸附的情况。这些技术不能用于检查噬菌体一组单一的吸附机制(如长尾纤维、短尾纤维、尾刺等)与该蛋白质靶向的细菌表面受体之间的个体相互作用。为了填补这一知识空白,我们开发了一种基于过滤的高通量细菌结合测定法,该方法可以评估噬菌体一组单一吸附机制的吸附能力。在本论文中,我们使用了一种融合蛋白,该融合蛋白由一个N端生物发光标签与T4的长尾纤维结合末端(gp37)翻译融合而成,以评估和量化gp37对72个分离株的参考菌株集(ECOR)的相对吸附强度。Gp37可以吸附72个ECOR菌株中的61个(85%),但大肠杆菌噬菌体T4仅在72个菌株中的8个(11%)上形成噬菌斑。叠加这两个数据集,我们能够识别出由于吸附失败而与T4不兼容的ECOR菌株,以及T4可以吸附但在吸附后某个步骤复制受阻的菌株。虽然本论文仅展示了我们的测定法表征噬菌体尾纤维吸附能力的能力,但我们的测定法可以很容易地进行修改,以评估其他吸附特异性噬菌体蛋白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a23e/8719110/6aff035afc7f/fmicb-12-741304-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验