Suppr超能文献

具有空间稀疏数据的交通预测的多分量时空图注意卷积网络。

Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data.

机构信息

School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China.

Beijing Key Laboratory of Mobile Computing and Pervasive Device, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Comput Intell Neurosci. 2021 Dec 23;2021:9134942. doi: 10.1155/2021/9134942. eCollection 2021.

Abstract

Predicting traffic data on traffic networks is essential to transportation management. It is a challenging task due to the complicated spatial-temporal dependency. The latest studies mainly focus on capturing temporal and spatial dependencies with spatially dense traffic data. However, when traffic data become spatially sparse, existing methods cannot capture sufficient spatial correlation information and thus fail to learn the temporal periodicity sufficiently. To address these issues, we propose a novel deep learning framework, Multi-component Spatial-Temporal Graph Attention Convolutional Networks (MSTGACN), for traffic prediction, and we successfully apply it to predicting traffic flow and speed with spatially sparse data. MSTGACN mainly consists of three independent components to model three types of periodic information. Each component in MSTGACN combines dilated causal convolution, graph convolution layer, and the weight-shared graph attention layer. Experimental results on three real-world traffic datasets, METR-LA, PeMS-BAY, and PeMSD7-sparse, demonstrate the superior performance of our method in the case of spatially sparse data.

摘要

预测交通网络上的交通数据对于交通管理至关重要。由于复杂的时空依赖性,这是一项具有挑战性的任务。最新的研究主要集中在利用空间密集的交通数据来捕捉时间和空间依赖性。然而,当交通数据变得空间稀疏时,现有方法无法捕捉到足够的空间相关信息,因此无法充分学习时间周期性。为了解决这些问题,我们提出了一种新的深度学习框架,多分量时空图注意卷积网络(MSTGACN),用于交通预测,并成功地将其应用于具有空间稀疏数据的交通流和速度预测。MSTGACN 主要由三个独立的组件组成,用于建模三种类型的周期性信息。MSTGACN 中的每个组件都结合了扩张因果卷积、图卷积层和共享权重图注意力层。在三个真实交通数据集 METR-LA、PEMS-BAY 和 PEMS-D7-sparse 上的实验结果表明,我们的方法在空间稀疏数据情况下具有优越的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1a9/8718320/5d1f7c17a445/CIN2021-9134942.001.jpg

相似文献

1
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data.
Comput Intell Neurosci. 2021 Dec 23;2021:9134942. doi: 10.1155/2021/9134942. eCollection 2021.
2
Hybrid Deep Learning Approach for Traffic Speed Prediction.
Big Data. 2024 Oct;12(5):377-389. doi: 10.1089/big.2021.0251. Epub 2022 Feb 2.
3
Spatio-temporal causal graph attention network for traffic flow prediction in intelligent transportation systems.
PeerJ Comput Sci. 2023 Jul 28;9:e1484. doi: 10.7717/peerj-cs.1484. eCollection 2023.
4
STHSGCN: Spatial-temporal heterogeneous and synchronous graph convolution network for traffic flow prediction.
Heliyon. 2023 Sep 11;9(9):e19927. doi: 10.1016/j.heliyon.2023.e19927. eCollection 2023 Sep.
5
IGAGCN: Information geometry and attention-based spatiotemporal graph convolutional networks for traffic flow prediction.
Neural Netw. 2021 Nov;143:355-367. doi: 10.1016/j.neunet.2021.05.035. Epub 2021 Jun 7.
6
7
Spatial-Temporal Attention Mechanism and Graph Convolutional Networks for Destination Prediction.
Front Neurorobot. 2022 Jul 6;16:925210. doi: 10.3389/fnbot.2022.925210. eCollection 2022.
8
An Efficient Short-Term Traffic Speed Prediction Model Based on Improved TCN and GCN.
Sensors (Basel). 2021 Oct 11;21(20):6735. doi: 10.3390/s21206735.
9
RGDAN: A random graph diffusion attention network for traffic prediction.
Neural Netw. 2024 Apr;172:106093. doi: 10.1016/j.neunet.2023.106093. Epub 2024 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验