基于多核时空动态扩张卷积的交通流预测自适应决策时空神经 ODE 模型
Adaptive Decision Spatio-temporal neural ODE for traffic flow forecasting with Multi-Kernel Temporal Dynamic Dilation Convolution.
机构信息
School of Computer and Control Engineering, Yantai University, YanTai, 264005, ShanDong, China.
School of Computer and Control Engineering, Yantai University, YanTai, 264005, ShanDong, China.
出版信息
Neural Netw. 2024 Nov;179:106549. doi: 10.1016/j.neunet.2024.106549. Epub 2024 Jul 16.
Traffic flow prediction is crucial for efficient traffic management. It involves predicting vehicle movement patterns to reduce congestion and enhance traffic flow. However, the highly non-linear and complex patterns commonly observed in traffic flow pose significant challenges for this task. Current Graph Neural Network (GNN) models often construct shallow networks, which limits their ability to extract deeper spatio-temporal representations. Neural ordinary differential equations for traffic prediction address over-smoothing but require significant computational resources, leading to inefficiencies, and sometimes deeper networks may lead to poorer predictions for complex traffic information. In this study, we propose an Adaptive Decision spatio-temporal Neural Ordinary Differential Network, which can adaptively determine the number of layers of ODE according to the complexity of traffic information. It can solve the over-smoothing problem better, improving overall efficiency and prediction accuracy. In addition, traditional temporal convolution methods make it difficult to deal with complex and variable traffic time information with a large time span. Therefore, we introduce a multi-kernel temporal dynamic expansive convolution to handle the traffic time information. Multi-kernel temporal dynamic expansive convolution employs a dynamic dilation strategy, dynamically adjusting the network's receptive field across levels, effectively capturing temporal dependencies, and can better adapt to the changing time data of traffic information. Additionally, multi-kernel temporal dynamic expansive convolution integrates multi-scale convolution kernels, enabling the model to learn features across diverse temporal scales. We evaluated our proposed method on several real-world traffic datasets. Experimental results show that our method outperformed state-of-the-art benchmarks.
交通流预测对于高效的交通管理至关重要。它涉及预测车辆的运动模式,以减少拥堵并提高交通流量。然而,交通流中常见的高度非线性和复杂模式给这项任务带来了巨大的挑战。当前的图神经网络(GNN)模型通常构建浅层网络,这限制了它们提取更深层次时空表示的能力。用于交通预测的神经常微分方程解决了过度平滑的问题,但需要大量的计算资源,导致效率低下,有时更深的网络可能会导致对复杂交通信息的预测效果不佳。在这项研究中,我们提出了一种自适应决策时空神经常微分网络,它可以根据交通信息的复杂性自适应地确定 ODE 的层数。它可以更好地解决过度平滑问题,提高整体效率和预测精度。此外,传统的时间卷积方法使得处理具有大时间跨度的复杂和多变的交通时间信息变得困难。因此,我们引入了一种多核时间动态扩展卷积来处理交通时间信息。多核时间动态扩展卷积采用动态扩张策略,在不同的级别上动态调整网络的感受野,有效地捕捉时间依赖性,并能够更好地适应交通信息不断变化的时间数据。此外,多核时间动态扩展卷积集成了多尺度卷积核,使模型能够学习不同时间尺度的特征。我们在几个真实的交通数据集上评估了我们提出的方法。实验结果表明,我们的方法优于最先进的基准。