Suppr超能文献

使用来自纽约市一个城市医疗系统的电子健康记录数据,对基于规则的算法进行验证,以确定结直肠癌、乳腺癌和宫颈癌的筛查状态。

Validation of rule-based algorithms to determine colorectal, breast, and cervical cancer screening status using electronic health record data from an urban healthcare system in New York City.

作者信息

Leder Macek Aleeza J, Kirschenbaum Joshua D, Ricklan Sarah J, Schreiber-Stainthorp William, Omene Britney C, Conderino Sarah

机构信息

New York University Grossman School of Medicine, United States.

New York University College of Arts and Sciences, United States.

出版信息

Prev Med Rep. 2021 Oct 12;24:101599. doi: 10.1016/j.pmedr.2021.101599. eCollection 2021 Dec.

Abstract

Although cancer screening has greatly reduced colorectal cancer, breast cancer, and cervical cancer morbidity and mortality over the last few decades, adherence to cancer screening guidelines remains inconsistent, particularly among certain demographic groups. This study aims to validate a rule-based algorithm to determine adherence to cancer screening. A novel screening algorithm was applied to electronic health record (EHR) from an urban healthcare system in New York City to automatically determine adherence to national cancer screening guidelines for patients deemed eligible for screening. First, a subset of patients was randomly selected from the EHR and their data were exported in a de-identified manner for manual review of screening adherence by two teams of human reviewers. Interrater reliability for manual review was calculated using Cohen's Kappa and found to be high in all instances. The sensitivity and specificity of the algorithm was calculated by comparing the algorithm to the final manual dataset. When assessing cancer screening adherence, the algorithm performed with a high sensitivity (79%, 70%, 80%) and specificity (92%, 99%, 97%) for colorectal cancer, breast cancer, and cervical cancer screenings, respectively. This study validates an algorithm that can effectively determine patient adherence to colorectal cancer, breast cancer, and cervical cancer screening guidelines. This design improves upon previous methods of algorithm validation by using computerized extraction of essential components of patients' EHRs and by using de-identified data for manual review. Use of the described algorithm could allow for more precise and efficient allocation of public health resources to improve cancer screening rates.

摘要

尽管在过去几十年中,癌症筛查已大幅降低了结直肠癌、乳腺癌和宫颈癌的发病率和死亡率,但对癌症筛查指南的遵循情况仍然参差不齐,尤其是在某些特定人群中。本研究旨在验证一种基于规则的算法,以确定对癌症筛查的遵循情况。一种新型筛查算法被应用于纽约市一个城市医疗系统的电子健康记录(EHR),以自动确定符合筛查条件的患者对国家癌症筛查指南的遵循情况。首先,从电子健康记录中随机选择一部分患者,并以去识别化的方式导出他们的数据,由两组人工审核员进行筛查遵循情况的人工审核。人工审核的评分者间信度使用科恩kappa系数计算,发现所有情况下都很高。通过将算法与最终的人工数据集进行比较,计算出算法的敏感性和特异性。在评估癌症筛查遵循情况时,该算法对结直肠癌、乳腺癌和宫颈癌筛查的敏感性分别为79%、70%、80%,特异性分别为92%、99%、97%。本研究验证了一种能够有效确定患者对结直肠癌、乳腺癌和宫颈癌筛查指南遵循情况的算法。该设计通过使用计算机提取患者电子健康记录的基本组成部分以及使用去识别化数据进行人工审核,改进了以往算法验证的方法。使用所描述的算法可以更精确、高效地分配公共卫生资源,以提高癌症筛查率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d024/8683885/c660d24e30d7/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验