Suppr超能文献

使用潜在类别分析对绵羊监测进行诊断建模:以阿根廷为例

Modelling diagnostics for surveillance in sheep using Latent Class Analysis: Argentina as a case study.

作者信息

Sykes Abagael L, Larrieu Edmundo, Poggio Thelma Verónica, Céspedes M Graciela, Mujica Guillermo B, Basáñez Maria-Gloria, Prada Joaquin M

机构信息

London Centre for Neglected Tropical Disease Research and MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.

Facultad de Ciencias Veterinarias, Universidad Nacional de La Pampa, General Pico, Argentina.

出版信息

One Health. 2021 Dec 4;14:100359. doi: 10.1016/j.onehlt.2021.100359. eCollection 2022 Jun.

Abstract

sensu is a globally prevalent zoonotic parasitic cestode leading to cystic echinococcosis (CE) in both humans and sheep with both medical and financial impacts, whose reduction requires the application of a One Health approach to its control. Regarding the animal health component of this approach, lack of accurate and practical diagnostics in livestock impedes the assessment of disease burden and the implementation and evaluation of control strategies. We use of a Bayesian Latent Class Analysis (LCA) model to estimate ovine CE prevalence in sheep samples from the Río Negro province of Argentina accounting for uncertainty in the diagnostics. We use model outputs to evaluate the performance of a novel recombinant B8/2 antigen B subunit (rEgAgB8/2) indirect enzyme-linked immunosorbent assay (ELISA) for detecting in sheep. Necropsy (as a partial gold standard), western blot (WB) and ELISA diagnostic data were collected from 79 sheep within two Río Negro slaughterhouses, and used to estimate individual infection status (assigned as a latent variable within the model). Using the model outputs, the performance of the novel ELISA at both individual and flock levels was evaluated, respectively, using a receiver operating characteristic (ROC) curve, and simulating a range of sample sizes and prevalence levels within hypothetical flocks. The estimated (mean) prevalence of ovine CE was 27.5% (95%Bayesian credible interval (95%BCI): 13.8%-58.9%) within the sample population. At the individual level, the ELISA had a mean sensitivity and specificity of 55% (95%BCI: 46%-68%) and 68% (95%BCI: 63%-92%), respectively, at an optimal optical density (OD) threshold of 0.378. At the flock level, the ELISA had an 80% probability of correctly classifying infection at an optimal cut-off threshold of 0.496. These results suggest that the novel ELISA could play a useful role as a flock-level diagnostic for CE surveillance in the region, supplementing surveillance activities in the human population and thus strengthening a One Health approach. Importantly, selection of ELISA cut-off threshold values must be tailored according to the epidemiological situation.

摘要

细粒棘球绦虫是一种全球流行的人畜共患寄生性绦虫,可导致人类和绵羊患囊型包虫病(CE),对医学和经济都有影响,减少该病需要采用“同一健康”方法进行控制。关于该方法中的动物健康部分,家畜缺乏准确实用的诊断方法阻碍了对疾病负担的评估以及控制策略的实施和评估。我们使用贝叶斯潜在类别分析(LCA)模型来估计阿根廷内乌肯省绵羊样本中的绵羊CE患病率,并考虑诊断中的不确定性。我们利用模型输出结果评估一种新型重组B8/2抗原B亚基(rEgAgB8/2)间接酶联免疫吸附测定(ELISA)检测绵羊体内CE的性能。在两个内乌肯屠宰场从79只绵羊收集尸检(作为部分金标准)、western印迹(WB)和ELISA诊断数据,并用于估计个体感染状况(在模型中作为潜在变量)。利用模型输出结果,分别使用受试者工作特征(ROC)曲线,并模拟假设羊群中的一系列样本量和患病率水平,在个体和群体水平上评估新型ELISA的性能。样本总体中绵羊CE的估计(平均)患病率为27.5%(95%贝叶斯可信区间(95%BCI):13.8%-58.9%)。在个体水平上,ELISA在最佳光密度(OD)阈值为0.378时,平均敏感性和特异性分别为55%(95%BCI:46%-68%)和68%(95%BCI:63%-92%)。在群体水平上,ELISA在最佳截断阈值为0.496时,正确分类感染的概率为80%。这些结果表明,新型ELISA作为该地区CE监测的群体水平诊断方法可能发挥有益作用,补充人群监测活动,从而加强“同一健康”方法。重要的是,ELISA截断阈值的选择必须根据流行病学情况进行调整。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/adc1/8683760/6534ac341fef/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验