Product Development Personalized Health Care, F. Hoffmann-La Roche Ltd., Welwyn Garden, United Kingdom.
Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom.
PLoS Negl Trop Dis. 2021 Feb 4;15(2):e0009042. doi: 10.1371/journal.pntd.0009042. eCollection 2021 Feb.
Various global health initiatives are currently advocating the elimination of schistosomiasis within the next decade. Schistosomiasis is a highly debilitating tropical infectious disease with severe burden of morbidity and thus operational research accurately evaluating diagnostics that quantify the epidemic status for guiding effective strategies is essential. Latent class models (LCMs) have been generally considered in epidemiology and in particular in recent schistosomiasis diagnostic studies as a flexible tool for evaluating diagnostics because assessing the true infection status (via a gold standard) is not possible. However, within the biostatistics literature, classical LCM have already been criticised for real-life problems under violation of the conditional independence (CI) assumption and when applied to a small number of diagnostics (i.e. most often 3-5 diagnostic tests). Solutions of relaxing the CI assumption and accounting for zero-inflation, as well as collecting partial gold standard information, have been proposed, offering the potential for more robust model estimates. In the current article, we examined such approaches in the context of schistosomiasis via analysis of two real datasets and extensive simulation studies. Our main conclusions highlighted poor model fit in low prevalence settings and the necessity of collecting partial gold standard information in such settings in order to improve the accuracy and reduce bias of sensitivity and specificity estimates.
目前,各种全球卫生倡议都在倡导在未来十年内消除血吸虫病。血吸虫病是一种高度衰弱的热带传染病,发病率严重,因此,准确评估诊断方法以量化流行状况,从而指导制定有效的策略,这一点至关重要。潜类别模型(LCM)在流行病学中,特别是在最近的血吸虫病诊断研究中,被普遍认为是一种评估诊断的灵活工具,因为通过金标准评估真实的感染状况是不可能的。然而,在生物统计学文献中,经典的 LCM 已经因为违反条件独立性(CI)假设以及应用于少数诊断方法(即通常为 3-5 种诊断测试)的实际问题而受到批评。已经提出了放松 CI 假设和考虑零膨胀以及收集部分金标准信息的解决方案,这为更稳健的模型估计提供了潜力。在当前的文章中,我们通过对两个真实数据集的分析和广泛的模拟研究,在血吸虫病的背景下检验了这些方法。我们的主要结论强调了在低流行率情况下模型拟合不佳的问题,以及在这种情况下收集部分金标准信息的必要性,以便提高准确性并降低敏感性和特异性估计的偏差。