School of Biomedical Engineering and Imaging Sciences, King's College London; BHF Centre of Excellence, Cardiovascular Division, King's College London; Biochemistry and Molecular Biology Department, School of Chemistry, Complutense University.
School of Biomedical Engineering and Imaging Sciences, King's College London; Radiology Department, School of Medicine, Pontificia Universidad Católica de Chile; ANID - Millennium Science Initiative Program - Millennium Nucleus for Cardiovascular Magnetic Resonance.
J Vis Exp. 2021 Dec 17(178). doi: 10.3791/62724.
Cardiovascular diseases are the leading causes of death worldwide. A permeable/leaky and dysfunctional endothelium is considered the earliest marker of vascular damage and thought to drive atherosclerosis. A method to identify these changes in vivo would be desirable in the clinic. Magnetic resonance imaging (MRI)-based tools and other technologies have enabled a profound understanding of the role of the endothelium in cardiovascular diseases and risk in vivo. There is, however, a need for reproducible and simple approaches for extracting quantifiable data reflective of endothelial damage from a single imaging study. A non-invasive, easy-to-implement, and quantitative MRI workflow was developed to acquire and analyze images that allow the quantification of two imaging biomarkers of arterial endothelial damage (leakiness/permeability and dysfunction). Here, the protocol describes the application of this method in the brachiocephalic artery of atherosclerotic ApoE mice using a clinical MRI scanner. First, late gadolinium enhancement (LGE) and Modified Look-Locker Inversion Recovery (MOLLI) T1 mapping protocols to quantify endothelial leakage using an albumin-binding probe are described. Second, anatomic, and quantitative blood flow sequences to measure endothelial dysfunction, in response to acetylcholine are described. Importantly, the method outlined here allows the acquisition of high-spatial-resolution 3D images with large volumetric coverage enabling accurate segmentation of vessel wall structures to improve inter- and intra-observer variability and to increase reliability and reproducibility. Additionally, it provides quantitative data without the need for high-temporal resolution for complex kinetic modeling, making it model-independent and even allowing for imaging of highly mobile vessels (coronary arteries). Therefore, the approach simplifies and expedites data analysis. Finally, this method can be implemented on different scanners, can be extended to image different arterial beds, and is clinically applicable for use in humans. This method could be used to diagnose and treat patients with atherosclerosis by adopting a precision-medicine approach.
心血管疾病是全球范围内导致死亡的主要原因。通透性增加/渗漏和功能障碍的内皮细胞被认为是血管损伤的最早标志物,并被认为是动脉粥样硬化的驱动因素。在临床上,理想的方法是能够在体内识别这些变化。基于磁共振成像(MRI)的工具和其他技术使人们对内皮细胞在心血管疾病和风险中的作用有了深刻的认识。然而,需要有一种可重复且简单的方法,从单次成像研究中提取反映内皮损伤的可量化数据。开发了一种非侵入性、易于实施的定量 MRI 工作流程,用于获取和分析图像,从而可以量化动脉内皮损伤的两种成像生物标志物(通透性/渗漏和功能障碍)。在这里,该方案描述了在动脉粥样硬化 ApoE 小鼠的头臂动脉中应用该方法的情况,使用的是临床 MRI 扫描仪。首先,描述了使用白蛋白结合探针定量内皮渗漏的晚期钆增强(LGE)和改良 Look-Locker 反转恢复(MOLLI)T1 映射协议。其次,描述了用于测量内皮功能障碍的解剖和定量血流序列,以响应乙酰胆碱。重要的是,这里概述的方法允许采集具有大体积覆盖范围的高空间分辨率 3D 图像,从而能够准确分割血管壁结构,以提高观察者间和观察者内的可变性,并提高可靠性和可重复性。此外,它提供了定量数据,而无需进行复杂动力学建模所需的高时间分辨率,使其成为无模型的方法,甚至可以对高度移动的血管(冠状动脉)进行成像。因此,该方法简化并加快了数据分析。最后,这种方法可以在不同的扫描仪上实现,可以扩展到不同的动脉床进行成像,并且在临床上适用于人类。这种方法可以通过采用精准医疗方法来诊断和治疗动脉粥样硬化患者。