Suppr超能文献

基于大白猪窝仔数的表型和基因组背景变异性评估。

Evaluation of the phenotypic and genomic background of variability based on litter size of Large White pigs.

机构信息

Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznań, Poland.

Topigs Norsvin Research Centre, Beuningen, The Netherlands.

出版信息

Genet Sel Evol. 2022 Jan 3;54(1):1. doi: 10.1186/s12711-021-00692-5.

Abstract

BACKGROUND

The genetic background of trait variability has captured the interest of ecologists and animal breeders because the genes that control it could be involved in buffering various environmental effects. Phenotypic variability of a given trait can be assessed by studying the heterogeneity of the residual variance, and the quantitative trait loci (QTL) that are involved in the control of this variability are described as variance QTL (vQTL). This study focuses on litter size (total number born, TNB) and its variability in a Large White pig population. The variability of TNB was evaluated either using a simple method, i.e. analysis of the log-transformed variance of residuals (LnVar), or the more complex double hierarchical generalized linear model (DHGLM). We also performed a single-SNP (single nucleotide polymorphism) genome-wide association study (GWAS). To our knowledge, this is only the second study that reports vQTL for litter size in pigs and the first one that shows GWAS results when using two methods to evaluate variability of TNB: LnVar and DHGLM.

RESULTS

Based on LnVar, three candidate vQTL regions were detected, on Sus scrofa chromosomes (SSC) 1, 7, and 18, which comprised 18 SNPs. Based on the DHGLM, three candidate vQTL regions were detected, i.e. two on SSC7 and one on SSC11, which comprised 32 SNPs. Only one candidate vQTL region overlapped between the two methods, on SSC7, which also contained the most significant SNP. Within this vQTL region, two candidate genes were identified, ADGRF1, which is involved in neurodevelopment of the brain, and ADGRF5, which is involved in the function of the respiratory system and in vascularization. The correlation between estimated breeding values based on the two methods was 0.86. Three-fold cross-validation indicated that DHGLM yielded EBV that were much more accurate and had better prediction of missing observations than LnVar.

CONCLUSIONS

The results indicated that the LnVar and DHGLM methods resulted in genetically different traits. Based on their validation, we recommend the use of DHGLM over the simpler method of log-transformed variance of residuals. These conclusions can be useful for future studies on the evaluation of the variability of any trait in any species.

摘要

背景

性状变异的遗传背景引起了生态学家和动物育种者的兴趣,因为控制它的基因可能参与缓冲各种环境影响。通过研究残差方差的异质性,可以评估给定性状的表型变异性,并且参与控制这种变异性的数量性状位点(QTL)被描述为方差 QTL(vQTL)。本研究关注大白猪群体中的产仔数(总产仔数,TNB)及其变异性。使用简单方法,即分析残差对数变换方差(LnVar),或更复杂的双层次广义线性模型(DHGLM)来评估 TNB 的变异性。我们还进行了单核苷酸多态性(SNP)全基因组关联研究(GWAS)。据我们所知,这是仅有的第二项报道猪产仔数 vQTL 的研究,也是第一项使用两种方法评估 TNB 变异性时显示 GWAS 结果的研究:LnVar 和 DHGLM。

结果

基于 LnVar,在 Sus scrofa 染色体(SSC)1、7 和 18 上检测到三个候选 vQTL 区域,包含 18 个 SNP。基于 DHGLM,在 SSC7 和 SSC11 上检测到三个候选 vQTL 区域,包含 32 个 SNP。两种方法仅在 SSC7 上检测到一个重叠的候选 vQTL 区域,该区域还包含最显著的 SNP。在这个 vQTL 区域内,鉴定出两个候选基因,ADGRF1 参与大脑的神经发育,ADGRF5 参与呼吸系统的功能和血管生成。两种方法估计的育种值之间的相关性为 0.86。三倍交叉验证表明,DHGLM 产生的 EBV 比 LnVar 更准确,对缺失观测值的预测更好。

结论

结果表明,LnVar 和 DHGLM 方法导致了遗传上不同的性状。基于验证,我们建议使用 DHGLM 而不是更简单的对数变换残差方差方法。这些结论对于未来评估任何物种任何性状的变异性的研究可能有用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验