Suppr超能文献

3D 打印的 Transwell 集成式鼻芯片模型,用于评估气流引起的机械应力对黏液分泌的影响。

3D printed transwell-integrated nose-on-chip model to evaluate effects of air flow-induced mechanical stresses on mucous secretion.

机构信息

Air Force Research Laboratory, 711Th Human Performance Wing, Wright-Patterson AFB, Dayton, OH, USA.

Department of Biomedical, Industrial and Human Factors Engineering, College of Engineering and Computer Science, Wright State University, OH, Dayton, USA.

出版信息

Biomed Microdevices. 2022 Jan 4;24(1):8. doi: 10.1007/s10544-021-00602-y.

Abstract

While there are many chip models that simulate the air-tissue interface of the respiratory system, only a few represent the upper respiratory system. These chips are restricted to unidirectional flow patterns that are not comparable to the highly dynamic and variable flow patterns found in the native nasal cavity. Here we describe the development of a tunable nose-on-chip device that mimics the air-mucosa interface and is coupled to an air delivery system that simulates natural breathing patterns through the generation of bi-directional air flow. Additionally, we employ computational modeling to demonstrate how the device design can be tuned to replicate desired mechanical characteristics within specific regions of the human nasal cavity. We also demonstrate how to culture human nasal epithelial cell line RPMI 2650 within the lab-on-chip (LOC) device. Lastly, Alcian Blue histological staining was performed to label mucin proteins, which play important roles in mucous secretion. Our results revealed that dynamic flow conditions can increase mucous secretion for RPMI 2650 cells, when compared to no flow, or stationary, conditions.

摘要

虽然有许多模拟呼吸系统气-组织界面的芯片模型,但只有少数能够代表上呼吸道系统。这些芯片仅限于单向流动模式,无法与鼻腔内高度动态和多变的流动模式相媲美。在这里,我们描述了一种可调谐的鼻腔芯片设备的开发,该设备模拟了空气-黏膜界面,并与空气输送系统耦合,通过产生双向气流来模拟自然呼吸模式。此外,我们利用计算模型演示了如何调整设备设计以在人体鼻腔的特定区域复制所需的机械特性。我们还展示了如何在芯片实验室(LOC)设备内培养人鼻腔上皮细胞系 RPMI 2650。最后,进行了阿尔辛蓝组织化学染色以标记粘蛋白蛋白,这些蛋白在粘液分泌中起着重要作用。我们的结果表明,与无流动或静止条件相比,动态流动条件可以增加 RPMI 2650 细胞的粘液分泌。

相似文献

3
Application of RPMI 2650 nasal cell model to a 3D printed apparatus for the testing of drug deposition and permeation of nasal products.
Eur J Pharm Biopharm. 2016 Oct;107:223-33. doi: 10.1016/j.ejpb.2016.07.010. Epub 2016 Jul 11.
4
Physical stresses at the air-wall interface of the human nasal cavity during breathing.
J Appl Physiol (1985). 2006 Mar;100(3):1003-10. doi: 10.1152/japplphysiol.01049.2005. Epub 2005 Nov 3.
5
Real-time quantitative monitoring of nasal drug delivery by a nasal epithelial mucosa-on-a-chip model.
Expert Opin Drug Deliv. 2021 Jun;18(6):803-818. doi: 10.1080/17425247.2021.1873274. Epub 2021 Jan 19.
6
A 3D-printed microfluidic platform for simulating the effects of CPAP on the nasal epithelium.
Biofabrication. 2021 Apr 8;13(3). doi: 10.1088/1758-5090/abe4c1.
7
Flow and air conditioning simulations of computer turbinectomized nose models.
Med Biol Eng Comput. 2018 Oct;56(10):1899-1910. doi: 10.1007/s11517-018-1823-2. Epub 2018 Apr 16.
8
A numerical simulation of air flow in the human respiratory system for various environmental conditions.
Theor Biol Med Model. 2021 Jan 6;18(1):2. doi: 10.1186/s12976-020-00133-8.
10
Voxel-based simulation of flow and temperature in the human nasal cavity.
Comput Methods Biomech Biomed Engin. 2021 Mar;24(4):459-466. doi: 10.1080/10255842.2020.1836166. Epub 2020 Oct 23.

引用本文的文献

1
A Cell-Based Nasal Model for Screening the Deposition, Biocompatibility, and Transport of Aerosolized PLGA Nanoparticles.
Mol Pharm. 2024 Mar 4;21(3):1108-1124. doi: 10.1021/acs.molpharmaceut.3c00639. Epub 2024 Feb 9.
4
Droplet Detection and Sorting System in Microfluidics: A Review.
Micromachines (Basel). 2022 Dec 30;14(1):103. doi: 10.3390/mi14010103.

本文引用的文献

3
Investigation of the abnormal nasal aerodynamics and trigeminal functions among empty nose syndrome patients.
Int Forum Allergy Rhinol. 2018 Mar;8(3):444-452. doi: 10.1002/alr.22045. Epub 2017 Nov 22.
4
The role of mucus in cell-based models used to screen mucosal drug delivery.
Adv Drug Deliv Rev. 2018 Jan 15;124:50-63. doi: 10.1016/j.addr.2017.07.019. Epub 2017 Jul 25.
5
Is RPMI 2650 a Suitable In Vitro Nasal Model for Drug Transport Studies?
Eur J Drug Metab Pharmacokinet. 2018 Feb;43(1):13-24. doi: 10.1007/s13318-017-0426-x.
6
In vitro nasal mucosa gland-like structure formation on a chip.
Lab Chip. 2017 May 2;17(9):1578-1584. doi: 10.1039/c6lc01564f.
7
Application of RPMI 2650 nasal cell model to a 3D printed apparatus for the testing of drug deposition and permeation of nasal products.
Eur J Pharm Biopharm. 2016 Oct;107:223-33. doi: 10.1016/j.ejpb.2016.07.010. Epub 2016 Jul 11.
8
A microfluidic device to apply shear stresses to polarizing ciliated airway epithelium using air flow.
Biomicrofluidics. 2014 Nov 14;8(6):064104. doi: 10.1063/1.4901930. eCollection 2014 Nov.
9
Mucin gene expression in reflux laryngeal mucosa: histological and in situ hybridization observations.
Int J Otolaryngol. 2014;2014:264075. doi: 10.1155/2014/264075. Epub 2014 Mar 24.
10
What is normal nasal airflow? A computational study of 22 healthy adults.
Int Forum Allergy Rhinol. 2014 Jun;4(6):435-46. doi: 10.1002/alr.21319. Epub 2014 Mar 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验