Suppr超能文献

免疫流行病学的媒介-宿主模型中的敏感性分析。

Sensitivity Analysis in an Immuno-Epidemiological Vector-Host Model.

机构信息

Department of Mathematics, University of Louisiana at Lafayette, 217 Maxim Doucet Hall, Lafayette, LA, P.O. Box 43568, USA.

Department of Mathematics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.

出版信息

Bull Math Biol. 2022 Jan 4;84(2):27. doi: 10.1007/s11538-021-00979-0.

Abstract

Sensitivity Analysis (SA) is a useful tool to measure the impact of changes in model parameters on the infection dynamics, particularly to quantify the expected efficacy of disease control strategies. SA has only been applied to epidemic models at the population level, ignoring the effect of within-host virus-with-immune-system interactions on the disease spread. Connecting the scales from individual to population can help inform drug and vaccine development. Thus the value of understanding the impact of immunological parameters on epidemiological quantities. Here we consider an age-since-infection structured vector-host model, in which epidemiological parameters are formulated as functions of within-host virus and antibody densities, governed by an ODE system. We then use SA for these immuno-epidemiological models to investigate the impact of immunological parameters on population-level disease dynamics such as basic reproduction number, final size of the epidemic or the infectiousness at different phases of an outbreak. As a case study, we consider Rift Valley Fever Disease utilizing parameter estimations from prior studies. SA indicates that [Formula: see text] increase in within-host pathogen growth rate can lead up to [Formula: see text] increase in [Formula: see text] up to [Formula: see text] increase in steady-state infected host abundance, and up to [Formula: see text] increase in infectiousness of hosts when the reproduction number [Formula: see text] is larger than one. These significant increases in population-scale disease quantities suggest that control strategies that reduce the within-host pathogen growth can be important in reducing disease prevalence.

摘要

敏感性分析(Sensitivity Analysis,SA)是一种有用的工具,可以衡量模型参数变化对感染动力学的影响,特别是量化疾病控制策略的预期效果。SA 仅应用于人群水平的传染病模型,忽略了宿主内病毒与免疫系统相互作用对疾病传播的影响。从个体到人群的连接尺度可以帮助为药物和疫苗的开发提供信息。因此,了解免疫参数对流行病学数量的影响具有重要意义。在这里,我们考虑了一种具有感染后时间结构的媒介-宿主模型,其中将流行病学参数表示为受 ODE 系统控制的宿主内病毒和抗体密度的函数。然后,我们使用 SA 对这些免疫传染病模型进行分析,以研究免疫参数对人口水平疾病动态的影响,如基本繁殖数、疾病流行的最终规模或暴发不同阶段的传染性。作为一个案例研究,我们利用先前研究的参数估计来考虑裂谷热疾病。SA 表明,宿主内病原体增长率增加[Formula: see text]可以导致基本繁殖数[Formula: see text]大于 1 时,感染宿主的稳态丰度增加[Formula: see text],以及宿主的传染性增加[Formula: see text]。这些人群水平疾病数量的显著增加表明,减少宿主内病原体生长的控制策略可能对降低疾病流行率非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/910d/8724773/0b9624f37f70/11538_2021_979_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验