Deng Leyan, Lian Defu, Huang Zhenya, Chen Enhong
IEEE Trans Neural Netw Learn Syst. 2022 Jun;33(6):2416-2428. doi: 10.1109/TNNLS.2021.3136171. Epub 2022 Jun 1.
Traffic anomalies, such as traffic accidents and unexpected crowd gathering, may endanger public safety if not handled timely. Detecting traffic anomalies in their early stage can benefit citizens' quality of life and city planning. However, traffic anomaly detection faces two main challenges. First, it is challenging to model traffic dynamics due to the complex spatiotemporal characteristics of traffic data. Second, the criteria of traffic anomalies may vary with locations and times. In this article, we propose a spatiotemporal graph convolutional adversarial network (STGAN) to address these above challenges. More specifically, we devise a spatiotemporal generator to predict the normal traffic dynamics and a spatiotemporal discriminator to determine whether an input sequence is real or not. There are high correlations between neighboring data points in the spatial and temporal dimensions. Therefore, we propose a recent module and leverage graph convolutional gated recurrent unit (GCGRU) to help the generator and discriminator learn the spatiotemporal features of traffic dynamics and traffic anomalies, respectively. After adversarial training, the generator and discriminator can be used as detectors independently, where the generator models the normal traffic dynamics patterns and the discriminator provides detection criteria varying with spatiotemporal features. We then design a novel anomaly score combining the abilities of two detectors, which considers the misleading of unpredictable traffic dynamics to the discriminator. We evaluate our method on two real-world datasets from New York City and California. The experimental results show that the proposed method detects various traffic anomalies effectively and outperforms the state-of-the-art methods. Furthermore, the devised anomaly score achieves more robust detection performances than the general score.
交通事故和意外人群聚集等交通异常情况若不及时处理,可能会危及公共安全。在早期阶段检测交通异常情况有利于提高市民生活质量和城市规划。然而,交通异常检测面临两个主要挑战。首先,由于交通数据复杂的时空特征,对交通动态进行建模具有挑战性。其次,交通异常的标准可能会因地点和时间而异。在本文中,我们提出了一种时空图卷积对抗网络(STGAN)来应对上述挑战。更具体地说,我们设计了一个时空生成器来预测正常的交通动态,并设计了一个时空判别器来确定输入序列是否真实。在空间和时间维度上,相邻数据点之间存在高度相关性。因此,我们提出了一个最近邻模块,并利用图卷积门控循环单元(GCGRU)分别帮助生成器和判别器学习交通动态和交通异常的时空特征。经过对抗训练后,生成器和判别器可以独立用作检测器,其中生成器对正常交通动态模式进行建模,判别器提供随时空特征变化的检测标准。然后,我们设计了一种结合两个检测器能力的新颖异常分数,该分数考虑了不可预测的交通动态对判别器的误导。我们在来自纽约市和加利福尼亚州的两个真实世界数据集上评估了我们的方法。实验结果表明,所提出的方法能够有效地检测各种交通异常情况,并且优于现有方法。此外,所设计的异常分数比一般分数具有更稳健的检测性能。