Suppr超能文献

基于几何代数的生成对抗网络的交通数据恢复

Traffic-Data Recovery Using Geometric-Algebra-Based Generative Adversarial Network.

作者信息

Zang Di, Ding Yongjie, Qu Xiaoke, Miao Chenglin, Chen Xihao, Zhang Junqi, Tang Keshuang

机构信息

Department of Computer Science and Technology, Tongji University, Shanghai 200092, China.

Department of Transportation Information and Control Engineering, Tongji University, Shanghai 200092, China.

出版信息

Sensors (Basel). 2022 Apr 2;22(7):2744. doi: 10.3390/s22072744.

Abstract

Traffic-data recovery plays an important role in traffic prediction, congestion judgment, road network planning and other fields. Complete and accurate traffic data help to find the laws contained in the data more efficiently and effectively. However, existing methods still have problems to cope with the case when large amounts of traffic data are missed. As a generalization of vector algebra, geometric algebra has more powerful representation and processing capability for high-dimensional data. In this article, we are thus inspired to propose the geometric-algebra-based generative adversarial network to repair the missing traffic data by learning the correlation of multidimensional traffic parameters. The generator of the proposed model consists of a geometric algebra convolution module, an attention module and a deconvolution module. Global and local data mean squared errors are simultaneously applied to form the loss function of the generator. The discriminator is composed of a multichannel convolutional neural network which can continuously optimize the adversarial training process. Real traffic data from two elevated highways are used for experimental verification. Experimental results demonstrate that our method can effectively repair missing traffic data in a robust way and has better performance when compared with the state-of-the-art methods.

摘要

交通数据恢复在交通预测、拥堵判断、道路网络规划等领域发挥着重要作用。完整且准确的交通数据有助于更高效且有效地发现数据中蕴含的规律。然而,现有方法在应对大量交通数据缺失的情况时仍存在问题。作为向量代数的推广,几何代数对高维数据具有更强大的表示和处理能力。因此,在本文中,我们受启发提出基于几何代数的生成对抗网络,通过学习多维交通参数的相关性来修复缺失的交通数据。所提模型的生成器由一个几何代数卷积模块、一个注意力模块和一个反卷积模块组成。全局和局部数据均方误差同时用于构成生成器的损失函数。判别器由一个多通道卷积神经网络组成,其可不断优化对抗训练过程。来自两条高架公路的真实交通数据用于实验验证。实验结果表明,我们的方法能够以稳健的方式有效修复缺失的交通数据,并且与现有最先进方法相比具有更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58f5/9002627/da0481ee7651/sensors-22-02744-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验