Suppr超能文献

用于儿科患者胸部X光骨抑制网络微调的高效标注

Efficient labeling for fine-tuning chest X-ray bone-suppression networks for pediatric patients.

作者信息

Xie Weijie, Gan Mengkun, Tan Xiaocong, Li Mujiao, Yang Wei, Wang Wenhui

机构信息

Information and Data Centre, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China.

Information and Data Centre, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China.

出版信息

Med Phys. 2025 Feb;52(2):978-992. doi: 10.1002/mp.17516. Epub 2024 Nov 15.

Abstract

BACKGROUND

Pneumonia, a major infectious cause of morbidity and mortality among children worldwide, is typically diagnosed using low-dose pediatric chest X-ray [CXR (chest radiography)]. In pediatric CXR images, bone occlusion leads to a risk of missed diagnosis. Deep learning-based bone-suppression networks relying on training data have enabled considerable progress to be achieved in bone suppression in adult CXR images; however, these networks have poor generalizability to pediatric CXR images because of the lack of labeled pediatric CXR images (i.e., bone images vs. soft-tissue images). Dual-energy subtraction imaging approaches are capable of producing labeled adult CXR images; however, their application is limited because they require specialized equipment, and they are infrequently employed in pediatric settings. Traditional image processing-based models can be used to label pediatric CXR images, but they are semiautomatic and have suboptimal performance.

PURPOSE

We developed an efficient labeling approach for fine-tuning pediatric CXR bone-suppression networks capable of automatically suppressing bone structures in CXR images for pediatric patients without the need for specialized equipment and technologist training.

METHODS

Three steps were employed to label pediatric CXR images and fine-tune pediatric bone-suppression networks: distance transform-based bone-edge detection, traditional image processing-based bone suppression, and fully automated pediatric bone suppression. In distance transform-based bone-edge detection, bone edges were automatically detected by predicting bone-edge distance-transform images, which were then used as inputs in traditional image processing. In this processing, pediatric CXR images were labeled by obtaining bone images through a series of traditional image processing techniques. Finally, the pediatric bone-suppression network was fine-tuned using the labeled pediatric CXR images. This network was initially pretrained on a public adult dataset comprising 240 adult CXR images (A240) and then fine-tuned and validated on 40 pediatric CXR images (P260_40labeled) from our customized dataset (named P260) through five-fold cross-validation; finally, the network was tested on 220 pediatric CXR images (P260_220unlabeled dataset).

RESULTS

The distance transform-based bone-edge detection network achieved a mean boundary distance of 1.029. Moreover, the traditional image processing-based bone-suppression model obtained bone images exhibiting a relative Weber contrast of 93.0%. Finally, the fully automated pediatric bone-suppression network achieved a relative mean absolute error of 3.38%, a peak signal-to-noise ratio of 35.5 dB, a structural similarity index measure of 98.1%, and a bone-suppression ratio of 90.1% on P260_40labeled.

CONCLUSIONS

The proposed fully automated pediatric bone-suppression network, together with the proposed distance transform-based bone-edge detection network, can automatically acquire bone and soft-tissue images solely from CXR images for pediatric patients and has the potential to help diagnose pneumonia in children.

摘要

背景

肺炎是全球儿童发病和死亡的主要感染原因,通常使用低剂量儿科胸部X光(CXR,胸部放射摄影)进行诊断。在儿科CXR图像中,骨骼遮挡会导致漏诊风险。基于深度学习的骨骼抑制网络依赖训练数据,在成人CXR图像的骨骼抑制方面取得了显著进展;然而,由于缺乏标记的儿科CXR图像(即骨骼图像与软组织图像),这些网络对儿科CXR图像的通用性较差。双能减影成像方法能够生成标记的成人CXR图像;然而,其应用受到限制,因为它们需要专门的设备,且在儿科环境中很少使用。基于传统图像处理的模型可用于标记儿科CXR图像,但它们是半自动的,性能欠佳。

目的

我们开发了一种高效的标记方法,用于微调儿科CXR骨骼抑制网络,该网络能够自动抑制儿科患者CXR图像中的骨骼结构,无需专门设备和技术人员培训。

方法

采用三个步骤标记儿科CXR图像并微调儿科骨骼抑制网络:基于距离变换的骨骼边缘检测、基于传统图像处理的骨骼抑制和全自动儿科骨骼抑制。在基于距离变换的骨骼边缘检测中,通过预测骨骼边缘距离变换图像自动检测骨骼边缘,然后将其用作传统图像处理的输入。在此处理过程中,通过一系列传统图像处理技术获取骨骼图像,从而标记儿科CXR图像。最后,使用标记的儿科CXR图像对儿科骨骼抑制网络进行微调。该网络最初在包含240张成人CXR图像的公共成人数据集(A240)上进行预训练,然后通过五折交叉验证在我们定制数据集(名为P260)中的40张儿科CXR图像(P260_40labeled)上进行微调并验证;最后,在220张儿科CXR图像(P260_220unlabeled数据集)上对该网络进行测试。

结果

基于距离变换的骨骼边缘检测网络的平均边界距离为1.029。此外,基于传统图像处理的骨骼抑制模型获得的骨骼图像相对韦伯对比度为93.0%。最后,全自动儿科骨骼抑制网络在P260_40labeled上的相对平均绝对误差为3.38%,峰值信噪比为35.5 dB,结构相似性指数测量值为98.1%,骨骼抑制率为90.1%。

结论

所提出的全自动儿科骨骼抑制网络,连同所提出的基于距离变换的骨骼边缘检测网络,能够仅从儿科患者的CXR图像中自动获取骨骼和软组织图像,具有帮助诊断儿童肺炎的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e29c/11788263/bf8c37336067/MP-52-978-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验