Zhou Zhizhen, Zhou Luping, Shen Kaikai
Electrical Engineering, University of Sydney, Room 512, Building J03, Darlington, NSW, 2008, Australia.
Electrical Engineering, University of Sydney, Room 404, Building J12, Darlington, NSW, 2008, Australia.
Med Phys. 2020 Dec;47(12):6207-6215. doi: 10.1002/mp.14371. Epub 2020 Oct 20.
The purpose of this essay is to improve computer-aided diagnosis of lung diseases by the removal of bone structures imagery such as ribs and clavicles, which may shadow a clinical view of lesions. This paper aims to develop an algorithm to suppress the imaging of bone structures within clinical x-ray images, leaving a residual portrayal of lung tissue; such that these images can be used to better serve applications, such as lung nodule detection or pathology based on the radiological reading of chest x rays.
We propose a conditional Adversarial Generative Network (cGAN) (Mirza and Osindero, Conditional generative adversarial nets, 2014.) model, consisting of a generator and a discriminator, for the task of bone shadow suppression. The proposed model utilizes convolutional operations to expand the size of the receptive field of the generator without losing contextual information while downsampling the image. It is trained by enforcing both the pixel-wise intensity similarity and the semantic-level visual similarity between the generated x-ray images and the ground truth, via optimizing an L-1 loss of the pixel intensity values on the generator side and a feature matching loss on the discriminator side, respectively.
The framework we propose is trained and tested on an open-access chest radiograph dataset for benchmark. Results show that our model is capable of generating bone-suppressed images of outstanding quality with a limited number of training samples (N = 272).
Our approach outperforms current state-of-the-art bone suppression methods using x-ray images. Instead of simply downsampling images at different scales, our proposed method mitigates the loss of contextual information by utilizing dilated convolutions, which gains a noticeable quality improvement for the outputs. On the other hand, our experiment shows that enforcing the semantic similarity between the generated and the ground truth images assists the adversarial training process and achieves better perceptual quality.
本文旨在通过去除肋骨和锁骨等可能遮挡病变临床视野的骨骼结构影像,改善肺部疾病的计算机辅助诊断。本文旨在开发一种算法,以抑制临床X光图像中的骨骼结构成像,仅保留肺组织的剩余图像;以便这些图像能够更好地服务于诸如肺结节检测或基于胸部X光片放射学解读的病理学等应用。
我们提出一种条件对抗生成网络(cGAN)(米尔扎和奥辛德罗,《条件生成对抗网络》,2014年)模型,由一个生成器和一个判别器组成,用于骨骼阴影抑制任务。所提出的模型利用卷积操作在对图像下采样的同时扩大生成器的感受野大小,且不丢失上下文信息。它通过分别优化生成器端像素强度值的L-1损失和判别器端的特征匹配损失,来强制生成的X光图像与真实图像之间在像素级强度相似性和语义级视觉相似性两方面进行训练。
我们提出的框架在一个用于基准测试的开放获取胸部X光片数据集上进行训练和测试。结果表明,我们的模型能够在有限数量的训练样本(N = 272)下生成质量优异的骨骼抑制图像。
我们的方法优于当前使用X光图像的最先进骨骼抑制方法。我们提出的方法不是简单地在不同尺度下对图像进行下采样,而是通过利用空洞卷积减轻上下文信息的损失,这使得输出质量有显著提高。另一方面,我们的实验表明,强制生成图像与真实图像之间的语义相似性有助于对抗训练过程,并实现更好的感知质量。