Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
Clinical Data Animation Center (CDAC), Boston, MA, USA.
Sleep. 2022 Apr 11;45(4). doi: 10.1093/sleep/zsac001.
Alterations in sleep spindles have been linked to cognitive impairment. This finding has contributed to a growing interest in identifying sleep-based biomarkers of cognition and neurodegeneration, including sleep spindles. However, flexibility surrounding spindle definitions and algorithm parameter settings present a methodological challenge. The aim of this study was to characterize how spindle detection parameter settings influence the association between spindle features and cognition and to identify parameters with the strongest association with cognition.
Adult patients (n = 167, 49 ± 18 years) completed the NIH Toolbox Cognition Battery after undergoing overnight diagnostic polysomnography recordings for suspected sleep disorders. We explored 1000 combinations across seven parameters in Luna, an open-source spindle detector, and used four features of detected spindles (amplitude, density, duration, and peak frequency) to fit linear multiple regression models to predict cognitive scores.
Spindle features (amplitude, density, duration, and mean frequency) were associated with the ability to predict raw fluid cognition scores (r = 0.503) and age-adjusted fluid cognition scores (r = 0.315) with the best spindle parameters. Fast spindle features generally showed better performance relative to slow spindle features. Spindle features weakly predicted total cognition and poorly predicted crystallized cognition regardless of parameter settings.
Our exploration of spindle detection parameters identified optimal parameters for studies of fluid cognition and revealed the role of parameter interactions for both slow and fast spindles. Our findings support sleep spindles as a sleep-based biomarker of fluid cognition.
睡眠纺锤波的改变与认知障碍有关。这一发现促使人们越来越关注识别基于睡眠的认知和神经退行性变的生物标志物,包括睡眠纺锤波。然而,围绕纺锤波定义和算法参数设置的灵活性带来了方法学上的挑战。本研究旨在描述纺锤波检测参数设置如何影响纺锤波特征与认知之间的关联,并确定与认知关联最强的参数。
成年患者(n=167,49±18 岁)在经过一夜的疑似睡眠障碍诊断性多导睡眠图记录后,完成了 NIH 工具包认知电池测试。我们在 Luna 中探索了 7 个参数的 1000 种组合,Luna 是一个开源的纺锤波探测器,并使用检测到的纺锤波的四个特征(振幅、密度、持续时间和峰值频率)来拟合线性多元回归模型,以预测认知评分。
纺锤波特征(振幅、密度、持续时间和平均频率)与预测原始流体认知评分(r=0.503)和年龄调整后的流体认知评分(r=0.315)的能力相关,最佳纺锤波参数。快纺锤波特征相对于慢纺锤波特征通常表现出更好的性能。无论参数设置如何,纺锤波特征都能微弱地预测总认知,也能微弱地预测晶体认知。
我们对纺锤波检测参数的探索确定了研究流体认知的最佳参数,并揭示了慢和快纺锤波参数相互作用的作用。我们的研究结果支持睡眠纺锤波作为流体认知的睡眠生物标志物。