Department of Mechanical Engineering, Anna University, Chennai, Tamil Nadu, India.
J Biomater Sci Polym Ed. 2022 Jun;33(8):947-975. doi: 10.1080/09205063.2022.2025637. Epub 2022 Feb 4.
Bone defect restoration remains challenging in orthopedic medical practices. In this study an attempt is carried out to probe the use of new biomimetic SPEEK (sulfonated polyether ether ketone) based nanofibrous scaffold to deliver amine functionalized hydroxyapatite nanoparticles loaded for its potent functionality in osteogenic differentiation. SPEEK polymer with reactive functional group SOH was synthesized through process of sulphonation reaction. Amine functionalized nanoparticles with protonated amino groups revamp the molecular interaction by the formation of hydrogen bonds that in turn intensify the bioactivity of the nanofibrous scaffold. Osteoconductive functionalized nanohydroxyapatite enhances the cell proliferation and osteogenicity with improved cell attachment and spreading. The results of FT-IR, XRD, Carbon-Silica NMR and EDX analysis confirmed the amine functionalization of the hydroxyapatite nanoparticles. Surface morphological analysis of the fabricated nanofibers through SEM and AFM analysis shows vastly interconnected porous structure that mimics the bone extracellular matrix, which enhances the cell compatibility. Cell adhesion and live dead assay of the nanoscaffolds express less cytotoxicity. Mineralization and alkaline phosphatase assay establish the osteogenic differentiation of the nanofibrous scaffold. The biocompatibility studies reveal that the fabricated scaffold was osteo-compatible with MG63 cell lines. Hemocompatibility study further proved that the designed biomimetic nanofibrous scaffold was highly suitable for bone tissue engineering. The results of analysis in zebrafish model for the fabricated nanofibers demonstrated significant increase in the caudal fin regeneration indicating mineralization of osteoblast. Thus, the commending results obtained instigate the potentiality of the composite nanofibrous scaffold as an effective biomimetic substrate for bone tissue regeneration.
在骨科医学实践中,骨缺损的修复仍然具有挑战性。在这项研究中,我们尝试探索使用新型仿生 SPEEK(磺化聚醚醚酮)纳米纤维支架来递送胺功能化羟基磷灰石纳米粒子负载,以发挥其在成骨分化中的强大功能。通过磺化反应过程合成具有反应性官能团 SOH 的 SPEEK 聚合物。带质子化氨基的胺功能化纳米粒子通过形成氢键来重塑分子相互作用,从而增强纳米纤维支架的生物活性。具有骨传导功能的纳米羟基磷灰石增强了细胞增殖和成骨性,同时提高了细胞附着和铺展。FT-IR、XRD、碳-硅 NMR 和 EDX 分析的结果证实了纳米羟基磷灰石的胺功能化。通过 SEM 和 AFM 分析对制备的纳米纤维进行表面形态分析表明,具有模仿骨细胞外基质的广泛互连多孔结构,从而增强了细胞相容性。纳米支架的细胞粘附和死活测定表明细胞毒性较小。矿化和碱性磷酸酶测定建立了纳米纤维支架的成骨分化。生物相容性研究表明,所制备的支架与 MG63 细胞系具有骨相容性。血液相容性研究进一步证明了设计的仿生纳米纤维支架非常适合骨组织工程。在斑马鱼模型中对制备的纳米纤维进行的分析结果表明,尾鳍再生显著增加,表明成骨细胞的矿化。因此,获得的令人鼓舞的结果表明,该复合纳米纤维支架作为骨组织再生的有效仿生基质具有潜力。