Suppr超能文献

在 PyBioNetFit 中实现实用的马尔可夫链蒙特卡罗采样算法。

Implementation of a practical Markov chain Monte Carlo sampling algorithm in PyBioNetFit.

机构信息

Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011, USA.

Information Sciences Group, Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

出版信息

Bioinformatics. 2022 Mar 4;38(6):1770-1772. doi: 10.1093/bioinformatics/btac004.

Abstract

SUMMARY

Bayesian inference in biological modeling commonly relies on Markov chain Monte Carlo (MCMC) sampling of a multidimensional and non-Gaussian posterior distribution that is not analytically tractable. Here, we present the implementation of a practical MCMC method in the open-source software package PyBioNetFit (PyBNF), which is designed to support parameterization of mathematical models for biological systems. The new MCMC method, am, incorporates an adaptive move proposal distribution. For warm starts, sampling can be initiated at a specified location in parameter space and with a multivariate Gaussian proposal distribution defined initially by a specified covariance matrix. Multiple chains can be generated in parallel using a computer cluster. We demonstrate that am can be used to successfully solve real-world Bayesian inference problems, including forecasting of new Coronavirus Disease 2019 case detection with Bayesian quantification of forecast uncertainty.

AVAILABILITY AND IMPLEMENTATION

PyBNF version 1.1.9, the first stable release with am, is available at PyPI and can be installed using the pip package-management system on platforms that have a working installation of Python 3. PyBNF relies on libRoadRunner and BioNetGen for simulations (e.g. numerical integration of ordinary differential equations defined in SBML or BNGL files) and Dask.Distributed for task scheduling on Linux computer clusters. The Python source code can be freely downloaded/cloned from GitHub and used and modified under terms of the BSD-3 license (https://github.com/lanl/pybnf). Online documentation covering installation/usage is available (https://pybnf.readthedocs.io/en/latest/). A tutorial video is available on YouTube (https://www.youtube.com/watch?v=2aRqpqFOiS4&t=63s).

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

在生物建模中,贝叶斯推断通常依赖于对多维非正态后验分布的马尔可夫链蒙特卡罗(MCMC)采样,而该后验分布无法进行解析处理。在这里,我们在开源软件包 PyBioNetFit(PyBNF)中实现了一种实用的 MCMC 方法,该方法旨在支持生物学系统数学模型的参数化。新的 MCMC 方法 am 采用了自适应移动提案分布。对于暖启动,可以在参数空间中的指定位置并使用最初由指定协方差矩阵定义的多元高斯提案分布来启动采样。可以使用计算机集群并行生成多个链。我们证明 am 可成功用于解决实际的贝叶斯推断问题,包括使用贝叶斯量化预测不确定性来预测新的 2019 年冠状病毒病病例检测。

可用性和实现

PyBNF 版本 1.1.9 是第一个带有 am 的稳定版本,可在 PyPI 上获得,并可使用平台上的 pip 包管理系统进行安装,前提是该平台具有 Python 3 的有效安装。PyBNF 依赖于 libRoadRunner 和 BioNetGen 进行模拟(例如,在 SBML 或 BNGL 文件中定义的常微分方程的数值积分)以及 Dask.Distributed 在 Linux 计算机集群上进行任务调度。可以从 GitHub 自由下载/克隆 Python 源代码,并根据 BSD-3 许可证的条款(https://github.com/lanl/pybnf)使用和修改。在线文档涵盖了安装/用法(https://pybnf.readthedocs.io/en/latest/)。YouTube 上提供了一个教程视频(https://www.youtube.com/watch?v=2aRqpqFOiS4&t=63s)。

补充信息

补充数据可在生物信息学在线获得。

相似文献

1
Implementation of a practical Markov chain Monte Carlo sampling algorithm in PyBioNetFit.
Bioinformatics. 2022 Mar 4;38(6):1770-1772. doi: 10.1093/bioinformatics/btac004.
2
pyABC: distributed, likelihood-free inference.
Bioinformatics. 2018 Oct 15;34(20):3591-3593. doi: 10.1093/bioinformatics/bty361.
3
Particle Gibbs sampling for Bayesian phylogenetic inference.
Bioinformatics. 2021 May 5;37(5):642-649. doi: 10.1093/bioinformatics/btaa867.
4
MCMC_CLIB-an advanced MCMC sampling package for ODE models.
Bioinformatics. 2014 Oct 15;30(20):2991-2. doi: 10.1093/bioinformatics/btu429. Epub 2014 Jul 7.
5
Bayesian inference using qualitative observations of underlying continuous variables.
Bioinformatics. 2020 May 1;36(10):3177-3184. doi: 10.1093/bioinformatics/btaa084.
6
PyDREAM: high-dimensional parameter inference for biological models in python.
Bioinformatics. 2018 Feb 15;34(4):695-697. doi: 10.1093/bioinformatics/btx626.
7
Exact Bayesian inference for phylogenetic birth-death models.
Bioinformatics. 2018 Nov 1;34(21):3638-3645. doi: 10.1093/bioinformatics/bty337.
8
A simple introduction to Markov Chain Monte-Carlo sampling.
Psychon Bull Rev. 2018 Feb;25(1):143-154. doi: 10.3758/s13423-016-1015-8.
9
VMCMC: a graphical and statistical analysis tool for Markov chain Monte Carlo traces.
BMC Bioinformatics. 2017 Feb 10;18(1):97. doi: 10.1186/s12859-017-1505-3.
10
Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7.
Syst Biol. 2018 Sep 1;67(5):901-904. doi: 10.1093/sysbio/syy032.

本文引用的文献

2
SBML Level 3: an extensible format for the exchange and reuse of biological models.
Mol Syst Biol. 2020 Aug;16(8):e9110. doi: 10.15252/msb.20199110.
3
PyBioNetFit and the Biological Property Specification Language.
iScience. 2019 Sep 27;19:1012-1036. doi: 10.1016/j.isci.2019.08.045. Epub 2019 Aug 28.
4
Evaluation of Parallel Tempering to Accelerate Bayesian Parameter Estimation in Systems Biology.
Proc Euromicro Int Conf Parallel Distrib Netw Based Process. 2018 Mar;2018:690-697. doi: 10.1109/PDP2018.2018.00114. Epub 2018 Jun 7.
5
Tellurium: An extensible python-based modeling environment for systems and synthetic biology.
Biosystems. 2018 Sep;171:74-79. doi: 10.1016/j.biosystems.2018.07.006. Epub 2018 Jul 25.
7
PyDREAM: high-dimensional parameter inference for biological models in python.
Bioinformatics. 2018 Feb 15;34(4):695-697. doi: 10.1093/bioinformatics/btx626.
8
BioNetGen 2.2: advances in rule-based modeling.
Bioinformatics. 2016 Nov 1;32(21):3366-3368. doi: 10.1093/bioinformatics/btw469. Epub 2016 Jul 8.
9
BioNetFit: a fitting tool compatible with BioNetGen, NFsim and distributed computing environments.
Bioinformatics. 2016 Mar 1;32(5):798-800. doi: 10.1093/bioinformatics/btv655. Epub 2015 Nov 9.
10
libRoadRunner: a high performance SBML simulation and analysis library.
Bioinformatics. 2015 Oct 15;31(20):3315-21. doi: 10.1093/bioinformatics/btv363. Epub 2015 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验