Suppr超能文献

数字胚胎:一种使用机器学习研究鸽子(Columba livia)感知分类的新技术方法。

Digital embryos: a novel technical approach to investigate perceptual categorization in pigeons (Columba livia) using machine learning.

机构信息

Department of Biopsychology, Faculty of Psychology, Ruhr University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.

The Social Brain Lab, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, Netherlands.

出版信息

Anim Cogn. 2022 Aug;25(4):793-805. doi: 10.1007/s10071-021-01594-1. Epub 2022 Jan 6.

Abstract

Pigeons are classic model animals to study perceptual category learning. To achieve a deeper understanding of the cognitive mechanisms of categorization, a careful consideration of the employed stimulus material and a thorough analysis of the choice behavior is mandatory. In the present study, we combined the use of "virtual phylogenesis", an evolutionary algorithm to generate artificial yet naturalistic stimuli termed digital embryos and a machine learning approach on the pigeons' pecking responses to gain insight into the underlying categorization strategies of the animals. In a forced-choice procedure, pigeons learned to categorize these stimuli and transferred their knowledge successfully to novel exemplars. We used peck tracking to identify where on the stimulus the animals pecked and further investigated whether this behavior was indicative of the pigeon's choice. Going beyond the classical analysis of the binary choice, we were able to predict the presented stimulus class based on pecking location using a k-nearest neighbor classifier, indicating that pecks are related to features of interest. By analyzing error trials with this approach, we further identified potential strategies of the pigeons to discriminate between stimulus classes. These strategies remained stable during category transfer, but differed between individuals indicating that categorization learning is not limited to a single learning strategy.

摘要

鸽子是研究感知类别学习的经典模式动物。为了更深入地了解分类的认知机制,必须仔细考虑所使用的刺激材料,并对选择行为进行彻底分析。在本研究中,我们将“虚拟进化”(一种生成称为数字胚胎的人工但自然刺激的进化算法)与机器学习方法相结合,研究鸽子对啄食反应,以深入了解动物的基本分类策略。在强制选择程序中,鸽子学会了对这些刺激进行分类,并成功地将其知识转移到新的样本上。我们使用啄食追踪来确定动物在刺激上啄食的位置,并进一步研究这种行为是否能反映鸽子的选择。超越经典的二元选择分析,我们能够使用 k-最近邻分类器基于啄食位置来预测呈现的刺激类别,表明啄食与感兴趣的特征有关。通过使用这种方法分析错误试验,我们进一步确定了鸽子在区分刺激类别时的潜在策略。这些策略在类别转移期间保持稳定,但个体之间存在差异,表明分类学习不受限于单一的学习策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验