Babu Pradeepta, Kim Heeyoung, Park Jeong Young, Naik Brundabana
Centre for Nanoscience and Nanotechnology, Siksha "O" Anusandhan, Bhubaneswar 751030, India.
Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea.
Inorg Chem. 2022 Jan 24;61(3):1368-1376. doi: 10.1021/acs.inorgchem.1c02863. Epub 2022 Jan 6.
Designing nanostructured arrays of two-dimensional surfaces and interfaces is a versatile approach to increasing their photoelectrochemical activity. Here, phosphorus (P)-incorporated nanostructured carbon nitride (h-PCN) with an enlarged surface area is fabricated by employing trioctylphosphine oxide (TOPO) as a dopant precursor for visible-light-driven photoelectrochemical water splitting to produce hydrogen. The structural, morphological, and electronic properties of the photocatalyst have been characterized through various physicochemical techniques. We show that the incorporation of P into the g-CN framework enhances light absorption over broad regimes, charge separation, and migration, as well as the specific surface area, showing excellent photocurrent enhancement (5.4 folds) in the cathodic direction as compared to bulk g-CN. Moreover, the photocathode shows 3.3-fold enhancement in current at zero biased potential. Without using any cocatalyst, the photoelectrodes produced 27 μmol h of H and 13 μmol hof O with 95% faradic efficiency. The excellent photoelectrochemical behavior toward water-splitting reactions by the photoelectrode is attributed to the synergistic effect of P incorporation and active sites emerging from the nanostructured architecture of the material. This work demonstrates the facile fabrication of nanostructured P-incorporated g-CN toward water-splitting reactions to produce hydrogen without using a cocatalyst in a simple and cost-effective way.
设计二维表面和界面的纳米结构阵列是提高其光电化学活性的一种通用方法。在此,通过使用三辛基氧化膦(TOPO)作为掺杂剂前驱体,制备了具有更大表面积的磷(P)掺杂纳米结构氮化碳(h-PCN),用于可见光驱动的光电化学水分解制氢。通过各种物理化学技术对光催化剂的结构、形态和电子性质进行了表征。我们表明,将P掺入g-CN框架中可增强在宽光谱范围内的光吸收、电荷分离和迁移以及比表面积,与块状g-CN相比,在阴极方向上显示出优异的光电流增强(5.4倍)。此外,光阴极在零偏压电位下的电流增强了3.3倍。在不使用任何助催化剂的情况下,光电极产生了27 μmol h的H和13 μmol h的O,法拉第效率为95%。光电极对水分解反应的优异光电化学行为归因于P掺入与材料纳米结构体系中出现的活性位点的协同效应。这项工作展示了以简单且经济高效的方式,在不使用助催化剂的情况下,轻松制备用于水分解反应制氢的纳米结构P掺杂g-CN。