Suppr超能文献

研究个性化网络模型的可行性。

Investigating the feasibility of idiographic network models.

作者信息

Mansueto Alessandra C, Wiers Reinout W, van Weert Julia C M, Schouten Barbara C, Epskamp Sacha

机构信息

Centre for Urban Mental Health, University of Amsterdam.

出版信息

Psychol Methods. 2023 Oct;28(5):1052-1068. doi: 10.1037/met0000466. Epub 2022 Jan 6.

Abstract

Recent times have seen a call for personalized psychotherapy and tailored communication during treatment, leading to the necessity to model the complex dynamics of mental disorders in a single subject. To this aim, time-series data in one patient can be collected through ecological momentary assessment and analyzed with the graphical vector autoregressive model, estimating temporal and contemporaneous idiographic networks. Idiographic networks graph interindividual processes that may be potentially used to tailor psychotherapy and provide personalized feedback to clients and are regarded as a promising tool for clinical practice. However, the question whether we can reliably estimate them in clinical settings remains unanswered. We conducted a large-scale simulation study in the context of psychopathology, testing the performance of personalized networks with different numbers of time points, percentages of missing data, and estimation methods. Results indicate that sensitivity is low with sample sizes feasible for clinical practice (75 and 100 time points). It seems possible to retrieve the global network structure but not to recover the full network. Estimating temporal networks appears particularly challenging; thus, with 75 and 100 observations, it is advisable to reduce the number of nodes to around six variables. With regard to missing data, full information maximum likelihood and the Kalman filter are effective in addressing random item-level missing data; consequently, planned missingness is a valid method to deal with missing data. We discuss possible methodological and clinical solutions to the challenges raised in this work. (PsycInfo Database Record (c) 2023 APA, all rights reserved).

摘要

近年来,人们呼吁在治疗过程中采用个性化心理治疗和量身定制的沟通方式,这就使得有必要对单个个体心理障碍的复杂动态进行建模。为此,可以通过生态瞬时评估收集一名患者的时间序列数据,并使用图形向量自回归模型进行分析,以估计时间和同期的个性化网络。个性化网络描绘了个体间的过程,这些过程可能潜在地用于定制心理治疗并向客户提供个性化反馈,被视为临床实践中一种很有前景的工具。然而,我们能否在临床环境中可靠地估计这些网络的问题仍未得到解答。我们在精神病理学背景下进行了一项大规模模拟研究,测试了不同时间点数、缺失数据百分比和估计方法下个性化网络的性能。结果表明,对于临床实践可行的样本量(75个和100个时间点),敏感性较低。似乎有可能检索到全局网络结构,但无法恢复完整网络。估计时间网络似乎特别具有挑战性;因此,在有75个和100个观测值的情况下,建议将节点数量减少到大约六个变量。关于缺失数据,全信息最大似然法和卡尔曼滤波器在处理随机项目级缺失数据方面是有效的;因此,有计划的缺失是处理缺失数据的一种有效方法。我们讨论了应对这项工作中提出的挑战的可能的方法学和临床解决方案。(PsycInfo数据库记录(c)2023美国心理学会,保留所有权利)

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验