Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK.
California Center for Algae Biotechnology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, 92093, United States.
N Biotechnol. 2022 May 25;68:9-18. doi: 10.1016/j.nbt.2022.01.001. Epub 2022 Jan 3.
Eukaryotic green microalgae represent a sustainable, photosynthetic biotechnology platform for generating high-value products. The model green alga Chlamydomonas reinhardtii has already been used to generate high value bioproducts such as recombinant proteins and terpenoids. However, low, unstable, and variable nuclear transgene expression has limited the ease and speed of metabolic engineering and recombinant protein expression in this system. Here, novel genetic devices for transgene expression in C. reinhardtii have been developed by identifying cis-regulatory DNA elements capable of driving high transgene expression in C. reinhardtii promoters using de novo motif discovery informatics approaches. Thirteen putative motifs were synthesized as concatemers, linked to a common minimal basal promoter, and assayed for their activity to drive expression of a yellow fluorescent protein reporter gene. Following transformation of the vectors into C. reinhardtii by electroporation, in vivo measurements of yellow fluorescent protein expression by flow cytometry revealed that five of the DNA motifs analyzed displayed significantly higher reporter expression compared to the basal promoter control. Two of the concatemerized motifs, despite being much smaller minimal cis-regulatory elements, drove reporter expression at levels approaching that of the conventionally-used AR1 promoter. This analysis provides insight into C. reinhardtii promoter structure and gene regulation, and provides a new toolbox of cis-regulatory elements that can be used to drive transgene expression at a variety of expression levels.
真核绿藻是一种可持续的光合生物技术平台,可用于生产高价值产品。模式绿藻莱茵衣藻已经被用于生产高价值的生物制品,如重组蛋白和萜类化合物。然而,低水平、不稳定和可变的核转基因表达限制了该系统中代谢工程和重组蛋白表达的简便性和速度。在这里,通过使用从头 motif 发现信息学方法鉴定能够在莱茵衣藻启动子中驱动转基因高表达的顺式调控 DNA 元件,开发了新型的莱茵衣藻转基因表达的遗传装置。将合成的 13 个假定 motif 作为串联体连接到一个常见的最小基础启动子上,并检测它们驱动黄色荧光蛋白报告基因表达的活性。通过电穿孔将载体转化为莱茵衣藻后,通过流式细胞术进行体内测量,发现分析的五个 DNA motif 与基础启动子对照相比,报告基因的表达显著更高。尽管串联的两个 motif 是更小的最小顺式调控元件,但它们驱动报告基因的表达水平接近常规使用的 AR1 启动子。该分析提供了对莱茵衣藻启动子结构和基因调控的深入了解,并提供了一个新的顺式调控元件工具箱,可用于在各种表达水平下驱动转基因表达。