Division of Biological Sciences, University of California San Diego, La Jolla, California 92093, United States.
Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
ACS Synth Biol. 2024 Jul 19;13(7):2150-2165. doi: 10.1021/acssynbio.4c00199. Epub 2024 Jul 10.
Algae biotechnology holds immense promise for revolutionizing the bioeconomy through the sustainable and scalable production of various bioproducts. However, their development has been hindered by the lack of advanced genetic tools. This study introduces a synthetic biology approach to develop such tools, focusing on the construction and testing of synthetic promoters. By analyzing conserved DNA motifs within the promoter regions of highly expressed genes across six different algal species, we identified cis-regulatory elements (CREs) associated with high transcriptional activity. Combining the algorithms POWRS, STREME, and PhyloGibbs, we predicted 1511 CREs and inserted them into a minimal synthetic promoter sequence in 1, 2, or 3 copies, resulting in 4533 distinct synthetic promoters. These promoters were evaluated in vivo for their capacity to drive the expression of a transgene in a high-throughput manner through next-generation sequencing post antibiotic selection and fluorescence-activated cell sorting. To validate our approach, we sequenced hundreds of transgenic lines showing high levels of GFP expression. Further, we individually tested 14 identified promoters, revealing substantial increases in GFP expression─up to nine times higher than the baseline synthetic promoter, with five matching or even surpassing the performance of the native AR1 promoter. As a result of this study, we identified a catalog of CREs that can now be used to build superior synthetic algal promoters. More importantly, here we present a validated pipeline to generate building blocks for innovative synthetic genetic tools applicable to any algal species with a sequenced genome and transcriptome data set.
藻类生物技术通过可持续和可扩展的方式生产各种生物制品,为生物经济带来了巨大的变革潜力。然而,它们的发展受到缺乏先进遗传工具的限制。本研究采用合成生物学方法来开发这些工具,重点构建和测试合成启动子。通过分析六个不同藻类物种中高表达基因启动子区域内保守的 DNA 基序,我们确定了与高转录活性相关的顺式调控元件 (CRE)。我们结合 POWRS、STREME 和 PhyloGibbs 算法,预测了 1511 个 CRE,并将它们以 1、2 或 3 个拷贝的形式插入到最小的合成启动子序列中,得到了 4533 个不同的合成启动子。通过抗生素选择和荧光激活细胞分选后的下一代测序,以高通量的方式评估这些启动子驱动转基因表达的能力。为了验证我们的方法,我们对数百个表现出高水平 GFP 表达的转基因株系进行了测序。此外,我们单独测试了 14 个鉴定出的启动子,发现 GFP 表达显著增加——最高可达基线合成启动子的 9 倍,其中 5 个与 AR1 天然启动子的性能相当,甚至超过了它。本研究确定了一个 CRE 目录,现在可以用来构建更好的合成藻类启动子。更重要的是,我们在这里提出了一个经过验证的构建创新合成遗传工具的流水线,适用于任何具有测序基因组和转录组数据集的藻类物种。