Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, UK.
Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, Massachusetts, USA.
BMJ Open. 2022 Jan 6;12(1):e051427. doi: 10.1136/bmjopen-2021-051427.
Combine Health Management Information Systems (HMIS) and probability survey data using the statistical annealing technique (AT) to produce more accurate health coverage estimates than either source of data and a measure of HMIS data error.
This study is set in Bihar, the fifth poorest state in India, where half the population lives below the poverty line. An important source of data, used by health professionals for programme decision making, is routine health facility or HMIS data. Its quality is sometimes poor or unknown, and has no measure of its uncertainty. Using AT, we combine district-level HMIS and probability survey data (n=475) for the first time for 10 indicators assessing antenatal care, institutional delivery and neonatal care from 11 blocks of Aurangabad and 14 blocks of Gopalganj districts (N=6 253 965) in Bihar state, India.
Both districts are rural. Bihar is 82.7% Hindu and 16.9% Islamic.
Survey prevalence measures for 10 indicators, corresponding prevalences using HMIS data, combined prevalences calculated with AT and SEs for each type of data.
The combined and survey estimates differ by <0.10. The combined and HMIS estimates differ by up to 84.2%, with the HMIS having 1.4-32.3 times larger error. Of 20 HMIS versus survey coverage estimate comparisons across the two districts only five differed by <0.10. Of 250 subdistrict-level comparisons of HMIS versus combined estimates, only 36.4% of the HMIS estimates are within the 95% CI of the combined estimate.
Our statistical innovation increases the accuracy of information available for local health system decision making, allows evaluation of indicator accuracy and increases the accuracy of HMIS estimates. The combined estimates with a measure of error better informs health system professionals about their risks when using HMIS estimates, so they can reduce waste by making better decisions. Our results show that AT is an effective method ready for additional international assessment while also being used to provide affordable information to improve health services.
利用统计退火技术(AT)将健康管理信息系统(HMIS)和概率调查数据相结合,生成比任何单一数据源都更准确的健康覆盖估计值,并衡量 HMIS 数据的误差。
本研究在印度第五贫困邦比哈尔邦进行,该邦有一半人口生活在贫困线以下。卫生专业人员用于决策的一个重要数据来源是常规卫生机构或 HMIS 数据。其质量有时较差或未知,且没有衡量其不确定性的方法。我们首次利用 AT 将 Aurangabad 和 Gopalganj 区的 11 个街区和 14 个街区的 10 个评估产前护理、机构分娩和新生儿护理的指标的地区级 HMIS 和概率调查数据(n=475)进行了合并(比哈尔邦,印度,N=6 253 965)。
两个区均为农村地区。比哈尔邦 82.7%为印度教徒,16.9%为伊斯兰教徒。
10 项指标的调查患病率测量值、HMIS 数据对应的患病率、利用 AT 计算的合并患病率以及每种数据类型的 SE。
合并和调查估计值的差异<0.10。合并和 HMIS 估计值的差异高达 84.2%,HMIS 的误差为 1.4-32.3 倍。在两个区的 20 个 HMIS 与调查覆盖估计值比较中,只有 5 个差异<0.10。在 250 个次区级别 HMIS 与合并估计值的比较中,只有 36.4%的 HMIS 估计值在合并估计值的 95%置信区间内。
我们的统计创新提高了用于当地卫生系统决策的信息准确性,允许评估指标的准确性,并提高了 HMIS 估计值的准确性。带有误差测量值的合并估计值可以更好地为卫生系统专业人员提供有关使用 HMIS 估计值的风险信息,从而通过做出更好的决策来减少浪费。我们的研究结果表明,AT 是一种有效的方法,已经准备好进行更多的国际评估,同时也可以提供负担得起的信息来改善卫生服务。