Suppr超能文献

潜在剖面分析对剖面间测量非不变性的稳健性。

Robustness of Latent Profile Analysis to Measurement Noninvariance Between Profiles.

作者信息

Wang Yan, Kim Eunsook, Yi Zhiyao

机构信息

University of Massachusetts Lowell, Lowell, MA, USA.

University of South Florida, Tampa, FL, USA.

出版信息

Educ Psychol Meas. 2022 Feb;82(1):5-28. doi: 10.1177/0013164421997896. Epub 2021 Mar 9.

Abstract

Latent profile analysis (LPA) identifies heterogeneous subgroups based on continuous indicators that represent different dimensions. It is a common practice to measure each dimension using items, create composite or factor scores for each dimension, and use these scores as indicators of profiles in LPA. In this case, measurement models for dimensions are not included and potential noninvariance across latent profiles is not modeled in LPA. This simulation study examined the robustness of LPA in terms of class enumeration and parameter recovery when the noninvariance was unmodeled by using composite or factor scores as profile indicators. Results showed that correct class enumeration rates of LPA were relatively high with small degree of noninvariance, large class separation, large sample size, and equal proportions. Severe bias in profile indicator mean difference was observed with intercept and loading noninvariance, respectively. Implications for applied researchers are discussed.

摘要

潜在剖面分析(LPA)基于代表不同维度的连续指标识别异质子组。通常的做法是使用项目来测量每个维度,为每个维度创建综合得分或因子得分,并将这些得分用作LPA中剖面的指标。在这种情况下,维度的测量模型未被纳入,并且潜在剖面之间的潜在非不变性在LPA中未被建模。本模拟研究考察了在未对非不变性进行建模的情况下,使用综合得分或因子得分作为剖面指标时,LPA在类别枚举和参数恢复方面的稳健性。结果表明,在非不变性程度较小、类别区分度大、样本量大且比例相等的情况下,LPA的正确类别枚举率相对较高。分别观察到截距和载荷非不变性时剖面指标均值差异存在严重偏差。文中还讨论了对应用研究人员的启示。

相似文献

1
Robustness of Latent Profile Analysis to Measurement Noninvariance Between Profiles.
Educ Psychol Meas. 2022 Feb;82(1):5-28. doi: 10.1177/0013164421997896. Epub 2021 Mar 9.
3
Assessing the Robustness of Mixture Models to Measurement Noninvariance.
Multivariate Behav Res. 2019 Nov-Dec;54(6):882-905. doi: 10.1080/00273171.2019.1596781. Epub 2019 Jul 2.
4
A Bayesian region of measurement equivalence (ROME) approach for establishing measurement invariance.
Psychol Methods. 2023 Aug;28(4):993-1004. doi: 10.1037/met0000455. Epub 2022 Jan 10.
6
Adjusting for Measurement Noninvariance with Alignment in Growth Modeling.
Multivariate Behav Res. 2023 Jan-Feb;58(1):30-47. doi: 10.1080/00273171.2021.1941730. Epub 2021 Jul 8.
7
Mixture multigroup factor analysis for unraveling factor loading noninvariance across many groups.
Psychol Methods. 2022 Jun;27(3):281-306. doi: 10.1037/met0000355. Epub 2020 Dec 3.
8
The Effect of Noninvariance on the Estimation of the Mediated Effect in the Two-Wave Mediation Model.
Struct Equ Modeling. 2022;29(6):908-919. doi: 10.1080/10705511.2022.2067164. Epub 2022 Jun 10.
10
Statistical Power to Detect the Correct Number of Classes in Latent Profile Analysis.
Struct Equ Modeling. 2013 Oct 1;20(4):640-657. doi: 10.1080/10705511.2013.824781.

引用本文的文献

2
3
The Association Between High Levels of Aggression and Insomnia in Chinese Adolescents: A Longitudinal Latent Profile Analysis.
Depress Anxiety. 2025 May 14;2025:3713624. doi: 10.1155/da/3713624. eCollection 2025.
4
Latent profile analysis of depression in elderly patients with cardio- and cerebrovascular diseases in China- based on CLHLS data.
Front Psychiatry. 2025 Mar 21;16:1556054. doi: 10.3389/fpsyt.2025.1556054. eCollection 2025.
8
Reading tea leaves or tracking true constructs? An assessment of personality-based latent profiles in eating disorders.
Front Psychiatry. 2024 May 14;15:1376565. doi: 10.3389/fpsyt.2024.1376565. eCollection 2024.
9
Race, academic achievement and the issue of inequitable motivational payoff.
Nat Hum Behav. 2023 Apr;7(4):515-528. doi: 10.1038/s41562-023-01533-9. Epub 2023 Feb 23.

本文引用的文献

1
Assessing Community Readiness for Preventing Youth Substance Use in Colombia: A Latent Profile Analysis.
Int J Ment Health Addict. 2020 Apr;18(2):368-381. doi: 10.1007/s11469-019-00191-1. Epub 2020 Jan 2.
2
Testing Measurement Invariance Across Unobserved Groups: The Role of Covariates in Factor Mixture Modeling.
Educ Psychol Meas. 2021 Feb;81(1):61-89. doi: 10.1177/0013164420925122. Epub 2020 May 28.
3
Psychosocial factors and multiple health risk behaviors among early adolescents: a latent profile analysis.
J Behav Med. 2020 Dec;43(6):1002-1013. doi: 10.1007/s10865-020-00154-1. Epub 2020 Apr 22.
4
Autoregressive mediation models using composite scores and latent variables: Comparisons and recommendations.
Psychol Methods. 2020 Aug;25(4):472-495. doi: 10.1037/met0000251. Epub 2020 Apr 9.
5
Factors associated with high functioning despite distress in post-9/11 veterans.
Rehabil Psychol. 2019 Aug;64(3):377-382. doi: 10.1037/rep0000271. Epub 2019 Apr 15.
6
Parental socialization profiles in Mexican-origin families: Considering cultural socialization and general parenting practices.
Cultur Divers Ethnic Minor Psychol. 2019 Jul;25(3):439-450. doi: 10.1037/cdp0000234. Epub 2018 Nov 1.
8
Sum Scores in Twin Growth Curve Models: Practicality Versus Bias.
Behav Genet. 2017 Sep;47(5):516-536. doi: 10.1007/s10519-017-9864-0. Epub 2017 Aug 5.
10
Distinguishing Between Latent Classes and Continuous Factors: Resolution by Maximum Likelihood?
Multivariate Behav Res. 2006 Dec 1;41(4):499-532. doi: 10.1207/s15327906mbr4104_4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验