Suppr超能文献

基于蛋白质序列和卷积神经网络的蛋白质无规则卷曲预测。

Computational Prediction of Intrinsically Disordered Proteins Based on Protein Sequences and Convolutional Neural Networks.

机构信息

School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China.

School of Computer Science and Technology, Tiangong University, Tianjin 300387, China.

出版信息

Comput Intell Neurosci. 2021 Dec 28;2021:4455604. doi: 10.1155/2021/4455604. eCollection 2021.

Abstract

Intrinsically disordered proteins (IDPs) possess at least one region that lacks a single stable structure in vivo, which makes them play an important role in a variety of biological functions. We propose a prediction method for IDPs based on convolutional neural networks (CNNs) and feature selection. The combination of sequence and evolutionary properties is used to describe the differences between disordered and ordered regions. Especially, to highlight the correlation between the target residue and adjacent residues, multiple windows are selected to preprocess the protein sequence through the selected properties. The shorter windows reflect the characteristics of the central residue, and the longer windows reflect the characteristics of the surroundings around the central residue. Moreover, to highlight the specificity of sequence and evolutionary properties, they are preprocessed, respectively. After that, the preprocessed properties are combined into feature matrices as the input of the constructed CNN. Our method is training as well as testing based on the DisProt database. The simulation results show that the proposed method can predict IDPs effectively, and the performance is competitive in comparison with IsUnstruct and ESpritz.

摘要

无规则蛋白质(IDPs)至少有一个区域在体内缺乏单一稳定的结构,这使得它们在各种生物功能中发挥着重要作用。我们提出了一种基于卷积神经网络(CNN)和特征选择的 IDP 预测方法。序列和进化特性的组合用于描述无序区和有序区之间的差异。特别是,为了突出目标残基与相邻残基之间的相关性,通过选择的特性,选择多个窗口对蛋白质序列进行预处理。较短的窗口反映了中心残基的特征,较长的窗口反映了中心残基周围环境的特征。此外,为了突出序列和进化特性的特异性,分别对它们进行预处理。之后,将预处理后的特性组合成特征矩阵作为构建的 CNN 的输入。我们的方法是基于 DisProt 数据库进行训练和测试的。模拟结果表明,所提出的方法可以有效地预测 IDPs,并且与 IsUnstruct 和 ESpritz 相比,其性能具有竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9340/8727116/ae373c93c64a/CIN2021-4455604.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验