Suppr超能文献

有序-无序连续统:通过分子模拟将蛋白质结构和无序的预测联系起来。

The Order-Disorder Continuum: Linking Predictions of Protein Structure and Disorder through Molecular Simulation.

机构信息

Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.

Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Sci Rep. 2020 Feb 7;10(1):2068. doi: 10.1038/s41598-020-58868-w.

Abstract

Intrinsically disordered proteins (IDPs) and intrinsically disordered regions within proteins (IDRs) serve an increasingly expansive list of biological functions, including regulation of transcription and translation, protein phosphorylation, cellular signal transduction, as well as mechanical roles. The strong link between protein function and disorder motivates a deeper fundamental characterization of IDPs and IDRs for discovering new functions and relevant mechanisms. We review recent advances in experimental techniques that have improved identification of disordered regions in proteins. Yet, experimentally curated disorder information still does not currently scale to the level of experimentally determined structural information in folded protein databases, and disorder predictors rely on several different binary definitions of disorder. To link secondary structure prediction algorithms developed for folded proteins and protein disorder predictors, we conduct molecular dynamics simulations on representative proteins from the Protein Data Bank, comparing secondary structure and disorder predictions with simulation results. We find that structure predictor performance from neural networks can be leveraged for the identification of highly dynamic regions within molecules, linked to disorder. Low accuracy structure predictions suggest a lack of static structure for regions that disorder predictors fail to identify. While disorder databases continue to expand, secondary structure predictors and molecular simulations can improve disorder predictor performance, which aids discovery of novel functions of IDPs and IDRs. These observations provide a platform for the development of new, integrated structural databases and fusion of prediction tools toward protein disorder characterization in health and disease.

摘要

无规蛋白 (IDPs) 和蛋白质内的无规区域 (IDRs) 发挥着越来越广泛的生物学功能,包括转录和翻译调控、蛋白质磷酸化、细胞信号转导以及机械作用。蛋白质功能与无序之间的紧密联系促使我们更深入地对 IDPs 和 IDRs 进行基础特性描述,以发现新的功能和相关机制。我们综述了最近在实验技术方面的进展,这些技术提高了对蛋白质中无规区域的识别。然而,实验策管的无序信息目前还没有达到折叠蛋白质数据库中实验确定的结构信息的规模,无序预测器依赖于几种不同的无序二元定义。为了将针对折叠蛋白质开发的二级结构预测算法与蛋白质无序预测器联系起来,我们对来自蛋白质数据库的代表性蛋白质进行了分子动力学模拟,将二级结构和无序预测与模拟结果进行比较。我们发现,神经网络开发的结构预测算法可用于识别分子内与无序相关的高动态区域。低准确性的结构预测表明,无序预测器无法识别的区域缺乏静态结构。虽然无序数据库在不断扩大,但二级结构预测器和分子模拟可以提高无序预测器的性能,有助于发现 IDPs 和 IDRs 的新功能。这些观察结果为开发新的、集成的结构数据库以及将预测工具融合到健康和疾病中的蛋白质无序特性描述提供了一个平台。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验