Liu Yongkai, Miao Qi, Surawech Chuthaporn, Zheng Haoxin, Nguyen Dan, Yang Guang, Raman Steven S, Sung Kyunghyun
Department of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
Physics and Biology in Medicine Interdisciplinary Program (IDP), David Geffen School of Medicine, University of California, Los Angeles, CA, United States.
Front Oncol. 2021 Dec 21;11:801876. doi: 10.3389/fonc.2021.801876. eCollection 2021.
Whole-prostate gland (WPG) segmentation plays a significant role in prostate volume measurement, treatment, and biopsy planning. This study evaluated a previously developed automatic WPG segmentation, deep attentive neural network (DANN), on a large, continuous patient cohort to test its feasibility in a clinical setting. With IRB approval and HIPAA compliance, the study cohort included 3,698 3T MRI scans acquired between 2016 and 2020. In total, 335 MRI scans were used to train the model, and 3,210 and 100 were used to conduct the qualitative and quantitative evaluation of the model. In addition, the DANN-enabled prostate volume estimation was evaluated by using 50 MRI scans in comparison with manual prostate volume estimation. For qualitative evaluation, visual grading was used to evaluate the performance of WPG segmentation by two abdominal radiologists, and DANN demonstrated either acceptable or excellent performance in over 96% of the testing cohort on the WPG or each prostate sub-portion (apex, midgland, or base). Two radiologists reached a substantial agreement on WPG and midgland segmentation ( = 0.75 and 0.63) and moderate agreement on apex and base segmentation ( = 0.56 and 0.60). For quantitative evaluation, DANN demonstrated a dice similarity coefficient of 0.93 ± 0.02, significantly higher than other baseline methods, such as DeepLab v3+ and UNet (both p values < 0.05). For the volume measurement, 96% of the evaluation cohort achieved differences between the DANN-enabled and manual volume measurement within 95% limits of agreement. In conclusion, the study showed that the DANN achieved sufficient and consistent WPG segmentation on a large, continuous study cohort, demonstrating its great potential to serve as a tool to measure prostate volume.
全前列腺(WPG)分割在前列腺体积测量、治疗及活检规划中发挥着重要作用。本研究在一个大型连续患者队列中评估了先前开发的自动WPG分割方法——深度注意力神经网络(DANN),以测试其在临床环境中的可行性。经机构审查委员会(IRB)批准并符合健康保险流通与责任法案(HIPAA)规定,该研究队列包括2016年至2020年间采集的3698例3T磁共振成像(MRI)扫描数据。总共335例MRI扫描数据用于训练模型,3210例和100例分别用于对模型进行定性和定量评估。此外,通过使用50例MRI扫描数据,将基于DANN的前列腺体积估计与手动前列腺体积估计进行比较。对于定性评估,由两名腹部放射科医生采用视觉分级法评估WPG分割的性能,在超过96%的测试队列中,DANN在WPG或每个前列腺亚部分(尖部、腺体中部或基部)的分割表现为可接受或优秀。两名放射科医生在WPG和腺体中部分割上达成了高度一致(分别为0.75和0.63),在尖部和基部分割上达成了中度一致(分别为0.56和0.60)。对于定量评估,DANN的骰子相似系数为0.93±0.02,显著高于其他基线方法,如深度卷积神经网络(DeepLab v3+)和U-Net(p值均<0.05)。对于体积测量,96%的评估队列在基于DANN的体积测量与手动体积测量之间的差异在95%一致性界限内。总之,该研究表明DANN在一个大型连续研究队列中实现了充分且一致的WPG分割,证明了其作为测量前列腺体积工具的巨大潜力。