Department of Epidemiology and Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China.
Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
Sci Rep. 2022 Jan 7;12(1):27. doi: 10.1038/s41598-021-03645-6.
There have been few investigations of cancer prognosis models based on Bayesian hierarchical models. In this study, we used a novel Bayesian method to screen mRNAs and estimate the effects of mRNAs on the prognosis of patients with lung adenocarcinoma. Based on the identified mRNAs, we can build a prognostic model combining mRNAs and clinical features, allowing us to explore new molecules with the potential to predict the prognosis of lung adenocarcinoma. The mRNA data (n = 594) and clinical data (n = 470) for lung adenocarcinoma were obtained from the TCGA database. Gene set enrichment analysis (GSEA), univariate Cox proportional hazards regression, and the Bayesian hierarchical Cox proportional hazards model were used to explore the mRNAs related to the prognosis of lung adenocarcinoma. Multivariate Cox proportional hazard regression was used to identify independent markers. The prediction performance of the prognostic model was evaluated not only by the internal cross-validation but also by the external validation based on the GEO dataset (n = 437). With the Bayesian hierarchical Cox proportional hazards model, a 14-gene signature that included CPS1, CTPS2, DARS2, IGFBP3, MCM5, MCM7, NME4, NT5E, PLK1, POLR3G, PTTG1, SERPINB5, TXNRD1, and TYMS was established to predict overall survival in lung adenocarcinoma. Multivariate analysis demonstrated that the 14-gene signature (HR 3.960, 95% CI 2.710-5.786), T classification (T, reference; T, HR 1.925, 95% CI 1.104-3.355) and N classification (N, reference; N, HR 2.212, 95% CI 1.520-3.220; N, HR 2.260, 95% CI 1.499-3.409) were independent predictors. The C-index of the model was 0.733 and 0.735, respectively, after performing cross-validation and external validation, a nomogram was provided for better prediction in clinical application. Bayesian hierarchical Cox proportional hazards models can be used to integrate high-dimensional omics information into a prediction model for lung adenocarcinoma to improve the prognostic prediction and discover potential targets. This approach may be a powerful predictive tool for clinicians treating malignant tumours.
基于贝叶斯分层模型的癌症预后模型研究较少。本研究采用一种新的贝叶斯方法筛选 mRNA 并估计其对肺腺癌患者预后的影响。基于鉴定的 mRNA,我们可以构建一个结合 mRNA 和临床特征的预后模型,探索具有预测肺腺癌预后潜力的新分子。mRNA 数据(n=594)和临床数据(n=470)来自 TCGA 数据库。使用基因集富集分析(GSEA)、单因素 Cox 比例风险回归和贝叶斯分层 Cox 比例风险模型来探讨与肺腺癌预后相关的 mRNA。多因素 Cox 比例风险回归用于识别独立标志物。预后模型的预测性能不仅通过内部交叉验证进行评估,还通过基于 GEO 数据集(n=437)的外部验证进行评估。使用贝叶斯分层 Cox 比例风险模型,建立了一个包含 CPS1、CTPS2、DARS2、IGFBP3、MCM5、MCM7、NME4、NT5E、PLK1、POLR3G、PTTG1、SERPINB5、TXNRD1 和 TYMS 的 14 个基因签名,用于预测肺腺癌的总生存期。多因素分析表明,14 个基因签名(HR 3.960,95%CI 2.710-5.786)、T 分类(T,参考;T,HR 1.925,95%CI 1.104-3.355)和 N 分类(N,参考;N,HR 2.212,95%CI 1.520-3.220;N,HR 2.260,95%CI 1.499-3.409)是独立的预测因子。模型的 C 指数分别为 0.733 和 0.735,交叉验证和外部验证后分别为 0.735,提供了一个列线图以更好地进行临床应用预测。贝叶斯分层 Cox 比例风险模型可用于将高维组学信息整合到肺腺癌预测模型中,以提高预后预测并发现潜在靶点。该方法可能是恶性肿瘤临床治疗的一种强大预测工具。