Suppr超能文献

基于人工智能的非小细胞肺癌转录组RNA序列分析技术选择指南

Artificial intelligence-based non-small cell lung cancer transcriptome RNA-sequence analysis technology selection guide.

作者信息

Joo Min Soo, Pyo Kyoung-Ho, Chung Jong-Moon, Cho Byoung Chul

机构信息

School of Electrical and Electronic Engineering, College of Engineering, Yonsei University, Seoul, Republic of Korea.

Department of Oncology, Severance Hospital, College of Medicine, Yonsei University, Seoul, Republic of Korea.

出版信息

Front Bioeng Biotechnol. 2023 Feb 15;11:1081950. doi: 10.3389/fbioe.2023.1081950. eCollection 2023.

Abstract

The incidence and mortality rates of lung cancer are high worldwide, where non-small cell lung cancer (NSCLC) accounts for more than 85% of lung cancer cases. Recent non-small cell lung cancer research has been focused on analyzing patient prognosis after surgery and identifying mechanisms in connection with clinical cohort and ribonucleic acid (RNA) sequencing data, including single-cell ribonucleic acid (scRNA) sequencing data. This paper investigates statistical techniques and artificial intelligence (AI) based non-small cell lung cancer transcriptome data analysis methods divided into target and analysis technology groups. The methodologies of transcriptome data were schematically categorized so researchers can easily match analysis methods according to their goals. The most widely known and frequently utilized transcriptome analysis goal is to find essential biomarkers and classify carcinomas and cluster NSCLC subtypes. Transcriptome analysis methods are divided into three major categories: Statistical analysis, machine learning, and deep learning. Specific models and ensemble techniques typically used in NSCLC analysis are summarized in this paper, with the intent to lay a foundation for advanced research by converging and linking the various analysis methods available.

摘要

肺癌的发病率和死亡率在全球范围内都很高,其中非小细胞肺癌(NSCLC)占肺癌病例的85%以上。近期非小细胞肺癌的研究主要集中在分析手术后患者的预后情况,并结合临床队列和核糖核酸(RNA)测序数据(包括单细胞核糖核酸(scRNA)测序数据)来确定相关机制。本文研究了基于统计技术和人工智能(AI)的非小细胞肺癌转录组数据分析方法,并将其分为目标组和分析技术组。转录组数据的方法进行了示意性分类,以便研究人员能够根据自己的目标轻松匹配分析方法。最广为人知且常用的转录组分析目标是寻找关键生物标志物、对癌症进行分类以及对非小细胞肺癌亚型进行聚类。转录组分析方法主要分为三大类:统计分析、机器学习和深度学习。本文总结了非小细胞肺癌分析中通常使用的特定模型和集成技术,旨在通过融合和链接各种可用分析方法为深入研究奠定基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/332f/9975749/3c562e368a5d/fbioe-11-1081950-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验