Division of Pulmonary and Critical Care, University of Vermont Medical Center, 89 Beaumont Avenue, Given D208, Burlington, VT, 05401, USA.
Division of Pulmonary and Critical Care, University of Florida, Gainesville, FL, USA.
Sci Rep. 2022 Jan 7;12(1):44. doi: 10.1038/s41598-021-03849-w.
We recently developed a computational model of cisplatin pharmacodynamics in an endobronchial lung tumor following ultrasound-guided transbronchial needle injection (EBUS-TBNI). The model suggests that it is more efficacious to apportion the cisplatin dose between injections at different sites rather than giving it all in a single central injection, but the model was calibrated only on blood cisplatin data from a single patient. Accordingly, we applied a modified version of our original model in a set of 32 patients undergoing EBUS-TBNI for non-small cell lung cancer (NSCLC). We used the model to predict clinical responses and compared them retrospectively to actual patient outcomes. The model correctly predicted the clinical response in 72% of cases, with 80% accuracy for adenocarcinomas and 62.5% accuracy for squamous-cell lung cancer. We also found a power-law relationship between tumor volume and the minimal dose needed to induce a response, with the power-law exponent depending on the number of injections administered. Our results suggest that current injection strategies may be significantly over- or under-dosing the agent depending on tumor size, and that computational modeling can be a useful planning tool for EBUS-TBNI of cisplatin in lung cancer.
我们最近开发了一种顺铂在超声引导经支气管针吸活检(EBUS-TBNI)后支气管内肺部肿瘤中药效学的计算模型。该模型表明,将顺铂剂量分配到不同部位的注射中比在单次中央注射中更有效,但该模型仅在来自单个患者的血液顺铂数据上进行了校准。因此,我们将我们原始模型的一个修改版本应用于 32 名接受 EBUS-TBNI 治疗非小细胞肺癌(NSCLC)的患者。我们使用该模型预测临床反应,并将其与实际患者结果进行回顾性比较。该模型正确预测了 72%的病例的临床反应,腺癌的准确率为 80%,鳞状细胞肺癌的准确率为 62.5%。我们还发现肿瘤体积与诱导反应所需的最小剂量之间存在幂律关系,幂律指数取决于给予的注射次数。我们的结果表明,根据肿瘤大小,当前的注射策略可能会过度或不足剂量地使用该药物,计算模型可以成为 EBUS-TBNI 中顺铂治疗肺癌的有用规划工具。