Suppr超能文献

胚胎囊胚期静态图像排序人工智能模型的特征描述。

Characterization of an artificial intelligence model for ranking static images of blastocyst stage embryos.

机构信息

Alife Health Inc., Cambridge, Massachusetts.

Alife Health Inc., Cambridge, Massachusetts.

出版信息

Fertil Steril. 2022 Mar;117(3):528-535. doi: 10.1016/j.fertnstert.2021.11.022. Epub 2022 Jan 5.

Abstract

OBJECTIVE

To perform a series of analyses characterizing an artificial intelligence (AI) model for ranking blastocyst-stage embryos. The primary objective was to evaluate the benefit of the model for predicting clinical pregnancy, whereas the secondary objective was to identify limitations that may impact clinical use.

DESIGN

Retrospective study.

SETTING

Consortium of 11 assisted reproductive technology centers in the United States.

PATIENT(S): Static images of 5,923 transferred blastocysts and 2,614 nontransferred aneuploid blastocysts.

INTERVENTION(S): None.

MAIN OUTCOME MEASURE(S): Prediction of clinical pregnancy (fetal heartbeat).

RESULT(S): The area under the curve of the AI model ranged from 0.6 to 0.7 and outperformed manual morphology grading overall and on a per-site basis. A bootstrapped study predicted improved pregnancy rates between +5% and +12% per site using AI compared with manual grading using an inverted microscope. One site that used a low-magnification stereo zoom microscope did not show predicted improvement with the AI. Visualization techniques and attribution algorithms revealed that the features learned by the AI model largely overlap with the features of manual grading systems. Two sources of bias relating to the type of microscope and presence of embryo holding micropipettes were identified and mitigated. The analysis of AI scores in relation to pregnancy rates showed that score differences of ≥0.1 (10%) correspond with improved pregnancy rates, whereas score differences of <0.1 may not be clinically meaningful.

CONCLUSION(S): This study demonstrates the potential of AI for ranking blastocyst stage embryos and highlights potential limitations related to image quality, bias, and granularity of scores.

摘要

目的

对一种用于胚胎等级评定的人工智能(AI)模型进行一系列分析。主要目标是评估该模型在预测临床妊娠方面的益处,次要目标是识别可能影响临床应用的局限性。

设计

回顾性研究。

地点

美国 11 个辅助生殖技术中心的联盟。

患者

5923 个移植囊胚和 2614 个非移植非整倍体囊胚的静态图像。

干预

无。

主要观察指标

临床妊娠(胎心)预测。

结果

AI 模型的曲线下面积范围为 0.6 至 0.7,总体上和在每个站点上的表现均优于手动形态学分级。一项采用 bootstrap 方法的研究预测,与使用倒置显微镜进行手动分级相比,使用 AI 可以使每个站点的妊娠率提高 5%至 12%。一个使用低倍立体变焦显微镜的站点并未显示出 AI 的预测改善。可视化技术和归因算法表明,AI 模型学习到的特征与手动分级系统的特征有很大的重叠。确定并减轻了与显微镜类型和胚胎持管微吸管存在相关的两种偏倚源。对 AI 评分与妊娠率的关系进行分析表明,评分差异≥0.1(10%)与提高的妊娠率相关,而评分差异<0.1 可能不具有临床意义。

结论

本研究表明 AI 用于胚胎等级评定的潜力,并强调了与图像质量、偏倚和评分粒度相关的潜在局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验