Salih Mohamed, Austin Christopher, Mantravadi Krishna, Seow Eva, Jitanantawittaya Sutthipat, Reddy Sandeep, Vollenhoven Beverley, Rezatofighi Hamid, Horta Fabrizzio
Department of Obstetrics and Gynaecology, Monash University, 246 Clayton Road, Clayton, VIC, 3168, Australia.
Dept of Data Science and Artificial Intelligence, Faculty of Information Technology, Monash University, Clayton, VIC , Australia.
Sci Rep. 2025 May 21;15(1):17585. doi: 10.1038/s41598-025-02076-x.
An advanced Artificial Intelligence (AI) model that leverages cutting-edge computer vision techniques to analyse embryo images and clinical data, enabling accurate prediction of clinical pregnancy outcomes in single embryo transfer procedures. Three AI models were developed, trained, and tested using a database comprised of a total of 1503 international treatment cycles (Thailand, Malaysia, and India): 1) A Clinical Multi-Layer Perceptron (MLP) for patient clinical data. 2) An Image Convolutional Neural Network (CNN) AI model using blastocyst images. 3) A fused model using a combination of both models. All three models were evaluated against their ability to predict clinical pregnancy and live birth. Each of the models were further assessed through a visualisation process where the importance of each data point clarified which clinical and embryonic features contributed the most to the prediction. The MLP model achieved a strong performance of 81.76% accuracy, 90% average precision and 0.91 AUC (Area Under the Curve). The CNN model achieved a performance of 66.89% accuracy, 74% average precision and 0.73 AUC. The Fusion model achieved 82.42% accuracy, 91% average precision and 0.91 AUC. From the visualisation process we found that female and male age to be the most clinical factors, whilst Trophectoderm to be the most important blastocyst feature. There is a gap in performance between the Clinical and Images model, which is expected due to the difficulty in predicting clinical pregnancy from just the blastocyst images. However, the Fusion AI model made more informed predictions, achieving better performance than separate models alone. This study demonstrates that AI for IVF application can increase prediction performance by integrating blastocyst images with patient clinical information.
一种先进的人工智能(AI)模型,利用前沿的计算机视觉技术分析胚胎图像和临床数据,能够在单胚胎移植程序中准确预测临床妊娠结局。使用一个包含总共1503个国际治疗周期(泰国、马来西亚和印度)的数据库开发、训练和测试了三种AI模型:1)用于患者临床数据的临床多层感知器(MLP)。2)使用囊胚图像的图像卷积神经网络(CNN)AI模型。3)结合两种模型的融合模型。针对这三种模型预测临床妊娠和活产的能力进行了评估。通过可视化过程进一步评估每个模型,在该过程中每个数据点的重要性得以明确,从而确定哪些临床和胚胎特征对预测贡献最大。MLP模型的准确率达到81.76%,平均精确率达到90%,曲线下面积(AUC)为0.91,表现出色。CNN模型的准确率为66.89%,平均精确率为74%,AUC为0.73。融合模型的准确率为82.42%,平均精确率为91%,AUC为0.91。从可视化过程中我们发现,女性和男性年龄是最重要的临床因素,而滋养外胚层是最重要的囊胚特征。临床模型和图像模型之间存在性能差距,鉴于仅从囊胚图像预测临床妊娠存在困难,这是意料之中的。然而,融合AI模型做出了更明智的预测,其性能优于单独的模型。这项研究表明,用于体外受精的AI通过将囊胚图像与患者临床信息相结合,可以提高预测性能。