使用流形学习技术将功能性脑网络嵌入低维空间

Embedding Functional Brain Networks in Low Dimensional Spaces Using Manifold Learning Techniques.

作者信息

Casanova Ramon, Lyday Robert G, Bahrami Mohsen, Burdette Jonathan H, Simpson Sean L, Laurienti Paul J

机构信息

Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, United States.

Laboratory for Complex Brain Networks, Wake Forest School of Medicine, Winston-Salem, NC, United States.

出版信息

Front Neuroinform. 2021 Dec 24;15:740143. doi: 10.3389/fninf.2021.740143. eCollection 2021.

Abstract

fMRI data is inherently high-dimensional and difficult to visualize. A recent trend has been to find spaces of lower dimensionality where functional brain networks can be projected onto manifolds as individual data points, leading to new ways to analyze and interpret the data. Here, we investigate the potential of two powerful non-linear manifold learning techniques for functional brain networks representation: (1) T-stochastic neighbor embedding (t-SNE) and (2) Uniform Manifold Approximation Projection (UMAP) a recent breakthrough in manifold learning. fMRI data from the Human Connectome Project (HCP) and an independent study of aging were used to generate functional brain networks. We used fMRI data collected during resting state data and during a working memory task. The relative performance of t-SNE and UMAP were investigated by projecting the networks from each study onto 2D manifolds. The levels of discrimination between different tasks and the preservation of the topology were evaluated using different metrics. Both methods effectively discriminated the resting state from the memory task in the embedding space. UMAP discriminated with a higher classification accuracy. However, t-SNE appeared to better preserve the topology of the high-dimensional space. When networks from the HCP and aging studies were combined, the resting state and memory networks in general aligned correctly. Our results suggest that UMAP, a more recent development in manifold learning, is an excellent tool to visualize functional brain networks. Despite dramatic differences in data collection and protocols, networks from different studies aligned correctly in the embedding space.

摘要

功能磁共振成像(fMRI)数据本质上是高维的,难以可视化。最近的一种趋势是找到低维空间,在其中功能脑网络可以作为单个数据点投影到流形上,从而产生分析和解释数据的新方法。在这里,我们研究了两种强大的非线性流形学习技术在功能脑网络表示方面的潜力:(1)T-随机邻域嵌入(t-SNE)和(2)均匀流形逼近投影(UMAP),这是流形学习中的一项最新突破。来自人类连接体项目(HCP)的fMRI数据和一项关于衰老的独立研究被用于生成功能脑网络。我们使用了在静息状态数据和工作记忆任务期间收集的fMRI数据。通过将每项研究中的网络投影到二维流形上,研究了t-SNE和UMAP的相对性能。使用不同的指标评估了不同任务之间的区分水平和拓扑结构的保留情况。两种方法都能在嵌入空间中有效地将静息状态与记忆任务区分开来。UMAP的分类准确率更高。然而,t-SNE似乎能更好地保留高维空间的拓扑结构。当将HCP和衰老研究中的网络结合起来时,静息状态和记忆网络总体上正确对齐。我们的结果表明,UMAP作为流形学习中的一项最新进展,是可视化功能脑网络的优秀工具。尽管在数据收集和方案上存在巨大差异,但来自不同研究的网络在嵌入空间中正确对齐。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e374/8739961/04b396c1f807/fninf-15-740143-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索