Busch Erica L, Huang Jessie, Benz Andrew, Wallenstein Tom, Lajoie Guillaume, Wolf Guy, Krishnaswamy Smita, Turk-Browne Nicholas B
Department of Psychology, Yale University, New Haven, CT, USA.
Department of Computer Science, Yale University, New Haven, CT, USA.
Nat Comput Sci. 2023 Mar;3(3):240-253. doi: 10.1038/s43588-023-00419-0. Epub 2023 Mar 27.
The complexity of the human brain gives the illusion that brain activity is intrinsically high-dimensional. Nonlinear dimensionality-reduction methods such as uniform manifold approximation and t-distributed stochastic neighbor embedding have been used for high-throughput biomedical data. However, they have not been used extensively for brain activity data such as those from functional magnetic resonance imaging (fMRI), primarily due to their inability to maintain dynamic structure. Here we introduce a nonlinear manifold learning method for time-series data-including those from fMRI-called temporal potential of heat-diffusion for affinity-based transition embedding (T-PHATE). In addition to recovering a low-dimensional intrinsic manifold geometry from time-series data, T-PHATE exploits the data's autocorrelative structure to faithfully denoise and unveil dynamic trajectories. We empirically validate T-PHATE on three fMRI datasets, showing that it greatly improves data visualization, classification, and segmentation of the data relative to several other state-of-the-art dimensionality-reduction benchmarks. These improvements suggest many potential applications of T-PHATE to other high-dimensional datasets of temporally diffuse processes.
人类大脑的复杂性造成了一种假象,即大脑活动本质上是高维的。诸如均匀流形逼近和t分布随机邻域嵌入等非线性降维方法已被用于高通量生物医学数据。然而,它们尚未广泛应用于诸如功能磁共振成像(fMRI)数据等大脑活动数据,主要是因为它们无法维持动态结构。在此,我们为时间序列数据(包括来自fMRI的数据)引入一种非线性流形学习方法,称为基于亲和度转移嵌入的热扩散时间潜力(T-PHATE)。除了从时间序列数据中恢复低维内在流形几何结构外,T-PHATE还利用数据的自相关结构进行可靠的去噪并揭示动态轨迹。我们在三个fMRI数据集上对T-PHATE进行了实证验证,结果表明,相对于其他几个最先进的降维基准,它极大地改善了数据可视化、分类以及数据分割。这些改进表明T-PHATE在其他时间扩散过程的高维数据集上有许多潜在应用。
Nat Comput Sci. 2023-3
BMC Bioinformatics. 2022-11-14
Front Hum Neurosci. 2023-7-11
Front Neuroinform. 2021-12-24
Biol Psychiatry Cogn Neurosci Neuroimaging. 2025-5
J Med Imaging (Bellingham). 2021-7
bioRxiv. 2023-1-16
Eur J Neurosci. 2025-5
Netw Neurosci. 2025-3-5
Front Psychiatry. 2025-2-26
Nat Commun. 2024-10-17
Nat Neurosci. 2024-9
Biol Psychiatry Cogn Neurosci Neuroimaging. 2025-5
Adv Sci (Weinh). 2024-6
PeerJ Comput Sci. 2024-5-24
Proc Natl Acad Sci U S A. 2022-10-25
Apert Neuro. 2021
Nat Biotechnol. 2022-5
Front Neuroinform. 2021-12-24
Curr Opin Neurobiol. 2021-10
Commun Biol. 2021-8-16
Elife. 2021-4-22