文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人类脑状态轨迹的多视图流形学习

Multi-view manifold learning of human brain-state trajectories.

作者信息

Busch Erica L, Huang Jessie, Benz Andrew, Wallenstein Tom, Lajoie Guillaume, Wolf Guy, Krishnaswamy Smita, Turk-Browne Nicholas B

机构信息

Department of Psychology, Yale University, New Haven, CT, USA.

Department of Computer Science, Yale University, New Haven, CT, USA.

出版信息

Nat Comput Sci. 2023 Mar;3(3):240-253. doi: 10.1038/s43588-023-00419-0. Epub 2023 Mar 27.


DOI:10.1038/s43588-023-00419-0
PMID:37693659
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10487346/
Abstract

The complexity of the human brain gives the illusion that brain activity is intrinsically high-dimensional. Nonlinear dimensionality-reduction methods such as uniform manifold approximation and t-distributed stochastic neighbor embedding have been used for high-throughput biomedical data. However, they have not been used extensively for brain activity data such as those from functional magnetic resonance imaging (fMRI), primarily due to their inability to maintain dynamic structure. Here we introduce a nonlinear manifold learning method for time-series data-including those from fMRI-called temporal potential of heat-diffusion for affinity-based transition embedding (T-PHATE). In addition to recovering a low-dimensional intrinsic manifold geometry from time-series data, T-PHATE exploits the data's autocorrelative structure to faithfully denoise and unveil dynamic trajectories. We empirically validate T-PHATE on three fMRI datasets, showing that it greatly improves data visualization, classification, and segmentation of the data relative to several other state-of-the-art dimensionality-reduction benchmarks. These improvements suggest many potential applications of T-PHATE to other high-dimensional datasets of temporally diffuse processes.

摘要

人类大脑的复杂性造成了一种假象,即大脑活动本质上是高维的。诸如均匀流形逼近和t分布随机邻域嵌入等非线性降维方法已被用于高通量生物医学数据。然而,它们尚未广泛应用于诸如功能磁共振成像(fMRI)数据等大脑活动数据,主要是因为它们无法维持动态结构。在此,我们为时间序列数据(包括来自fMRI的数据)引入一种非线性流形学习方法,称为基于亲和度转移嵌入的热扩散时间潜力(T-PHATE)。除了从时间序列数据中恢复低维内在流形几何结构外,T-PHATE还利用数据的自相关结构进行可靠的去噪并揭示动态轨迹。我们在三个fMRI数据集上对T-PHATE进行了实证验证,结果表明,相对于其他几个最先进的降维基准,它极大地改善了数据可视化、分类以及数据分割。这些改进表明T-PHATE在其他时间扩散过程的高维数据集上有许多潜在应用。

相似文献

[1]
Multi-view manifold learning of human brain-state trajectories.

Nat Comput Sci. 2023-3

[2]
Shape-aware stochastic neighbor embedding for robust data visualisations.

BMC Bioinformatics. 2022-11-14

[3]
A Heat Diffusion Perspective on Geodesic Preserving Dimensionality Reduction.

ArXiv. 2023-5-30

[4]
Panoramic Manifold Projection (Panoramap) for Single-Cell Data Dimensionality Reduction and Visualization.

Int J Mol Sci. 2022-7-14

[5]
Manifold learning for fMRI time-varying functional connectivity.

Front Hum Neurosci. 2023-7-11

[6]
Manifold learning uncovers nonlinear interactions between the adolescent brain and environment that predict emotional and behavioral problems.

bioRxiv. 2024-6-21

[7]
Embedding Functional Brain Networks in Low Dimensional Spaces Using Manifold Learning Techniques.

Front Neuroinform. 2021-12-24

[8]
Manifold Learning Uncovers Nonlinear Interactions Between the Adolescent Brain and Environment That Predict Emotional and Behavioral Problems.

Biol Psychiatry Cogn Neurosci Neuroimaging. 2025-5

[9]
Visualizing temporal brain-state changes for fMRI using t-distributed stochastic neighbor embedding.

J Med Imaging (Bellingham). 2021-7

[10]
Manifold Learning for fMRI time-varying FC.

bioRxiv. 2023-1-16

引用本文的文献

[1]
Neurospectrum: A Geometric and Topological Deep Learning Framework for Uncovering Spatiotemporal Signatures in Neural Activity.

bioRxiv. 2025-5-8

[2]
Magnetoencephalography Dimensionality Reduction Informed by Dynamic Brain States.

Eur J Neurosci. 2025-5

[3]
Complexity in speech and music listening via neural manifold flows.

Netw Neurosci. 2025-3-5

[4]
Deep multimodal representations and classification of first-episode psychosis via live face processing.

Front Psychiatry. 2025-2-26

[5]
The human claustrum tracks slow waves during sleep.

Nat Commun. 2024-10-17

[6]
Centering cognitive neuroscience on task demands and generalization.

Nat Neurosci. 2024-9

[7]
Manifold Learning Uncovers Nonlinear Interactions Between the Adolescent Brain and Environment That Predict Emotional and Behavioral Problems.

Biol Psychiatry Cogn Neurosci Neuroimaging. 2025-5

[8]
Connectome caricatures: removing large-amplitude co-activation patterns in resting-state fMRI emphasizes individual differences.

bioRxiv. 2024-4-11

[9]
Never-Ending Learning for Explainable Brain Computing.

Adv Sci (Weinh). 2024-6

[10]
Manifold learning uncovers nonlinear interactions between the adolescent brain and environment that predict emotional and behavioral problems.

bioRxiv. 2024-6-21

本文引用的文献

[1]
Multi-view data visualisation manifold learning.

PeerJ Comput Sci. 2024-5-24

[2]
Neural event segmentation of continuous experience in human infants.

Proc Natl Acad Sci U S A. 2022-10-25

[3]
BrainIAK: The Brain Imaging Analysis Kit.

Apert Neuro. 2021

[4]
Multiscale PHATE identifies multimodal signatures of COVID-19.

Nat Biotechnol. 2022-5

[5]
Embedding Functional Brain Networks in Low Dimensional Spaces Using Manifold Learning Techniques.

Front Neuroinform. 2021-12-24

[6]
Interpreting neural computations by examining intrinsic and embedding dimensionality of neural activity.

Curr Opin Neurobiol. 2021-10

[7]
The brain and its time: intrinsic neural timescales are key for input processing.

Commun Biol. 2021-8-16

[8]
Nonlinear manifold learning in functional magnetic resonance imaging uncovers a low-dimensional space of brain dynamics.

Hum Brain Mapp. 2021-10-1

[9]
Geometry of abstract learned knowledge in the hippocampus.

Nature. 2021-7

[10]
Anticipation of temporally structured events in the brain.

Elife. 2021-4-22

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索