Suppr超能文献

T 分布随机近邻嵌入在 rs-fMRI 上的精细脑功能分区。

T-distribution stochastic neighbor embedding for fine brain functional parcellation on rs-fMRI.

机构信息

Institute of Medical Imaging Engineering, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.

Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.

出版信息

Brain Res Bull. 2020 Sep;162:199-207. doi: 10.1016/j.brainresbull.2020.06.007. Epub 2020 Jun 27.

Abstract

In human functional connectome and network analyses, brain subregions that are functionally parcellated have a better consistency than do anatomical subregions. Resting-state functional magnetic resonance imaging (rs-fMRI) signals can function as coherent connectivity patterns that can be used to assess human brain functional architecture. In this paper, an optimized framework that combines automatic spectral clustering with dimensionality reduction is presented for fine-grained functional parcellation of rs-fMRI of the human brain. First, the t-distribution stochastic neighborhood embedding (t-SNE) algorithm extracts features from the high-dimensional functional connectivity patterns between voxels of the brain regions to be segmented and the whole brain. Then, the number of clusters is determined, and each voxel in the regions is parcellated by the automatic spectral clustering algorithm based on the eigengap. A quantitative validation of the proposed methodology in synthetic seed regions demonstrated its accuracy and performance superiority compared to previous methods. Moreover, we were able to successfully divide the parahippocampal gyrus into three subregions in both the left and right hemispheres. The distinctive functional connectivity patterns of these subregions, educed from rs-fMRI data, further established the validity of the parcellation results. Notably, our findings reveal a novel insight into brain functional parcellation as well as the construction of functional atlases for future Cognitive Connectome analyses.

摘要

在人类功能连接组学和网络分析中,功能分割的脑区比解剖学分区具有更好的一致性。静息态功能磁共振成像(rs-fMRI)信号可以作为相干连接模式,用于评估人类大脑的功能结构。在本文中,提出了一种结合自动谱聚类和降维的优化框架,用于对人脑 rs-fMRI 进行细粒度的功能分割。首先,t 分布随机邻域嵌入(t-SNE)算法从待分割的脑区和全脑的体素之间的高维功能连接模式中提取特征。然后,确定聚类的数量,并基于特征间隙通过自动谱聚类算法对每个体素进行分割。在合成种子区域中的方法学定量验证表明,与以前的方法相比,它具有更高的准确性和性能优势。此外,我们能够成功地将海马旁回分为左右半球的三个亚区。从 rs-fMRI 数据中推导出的这些亚区的独特功能连接模式进一步证实了分割结果的有效性。值得注意的是,我们的研究结果揭示了一种对大脑功能分割的新见解,以及未来认知连接组学中功能图谱构建的新途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验